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Once upon a time computer memory was one of the most expensive commodities on earth, and
large amounts of human ingenuity were spent trying to simulate supernova explosions with
nothing more than a future Nobel prize winner and a vast array of valves.  Nowadays many
people have enough computer memory to support simulating the destruction of most of the
galaxy in any one of their hand-held phones, digital diaries, or microwave ovens.

But at least two things have remained constant throughout the history of computing.  Software
design remains hard [Gamma et al 1995], and its functionality still expands to fill the memory
available [Potter 1948]. This book addresses both these issues.  Patterns have proved a
successful format to capture knowledge about software design; these patterns in particular
tackle memory requirements.

As authors we had other several additional aims in writing this book.  As patterns researchers
and writers we wanted to learn more about patterns and pattern writing, and as software
designers and architects we wanted to study existing systems to learn from them.  In particular:

• We wanted to gain and share an in-depth knowledge of portable small memory
techniques; techniques that work in many different environments.

• We wanted to write a complete set of patterns dealing with one single force —  in this
case, memory requirements.

• We wanted to study the relationships between patterns, and to group and order the
patterns based on these mutual relationships, and lastly:

• We wanted an approachable book, one to skim for fun rather than to suffer as a
penance.

This book is the result.   It’s written for software developers and architects, like ourselves,
whether or not you may happen to be facing memory constraints in your immediate work.

To make the book more approachable (and more fun to write) we’ve taken a light-hearted slant
in most of our examples for the patterns, and Duane Bibby’s cartoons are delightfully frivolous.
If frivolity doesn’t appeal to you, please ignore the cartoons and the paragraphs describing the
examples: the remaining text is as rigorous as we can make it.

This book is still a work in progress.  We have incorporated the comments of many people, and
we welcome more.  You can contact us at our web site, http://www.smallmemory.com/
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 Introduction
“Small is Beautiful”

E. F. Schumacher

“You can never be too rich or too thin”
Barbara Hutton

Designing small software that can run efficiently in a limited memory space was, until recently
a dying art.  PCs, workstations and mainframes appeared to have exponentially increasing
amounts of memory and processor speed, and it was becoming rare for programmers even to
need to think about memory constraints.

At the turn of a new century, we’re discovering an imminent market of hundreds of millions of
mobile devices, demanding enormous amounts of high-specification software; physical size and
power limitations means these devices will have relatively limited memory.  At the same time,
the programmers of Web and database servers are finding that their applications must be
memory-efficient to support the hundreds of thousands of simultaneous users they need for
profitability.  Even PC and workstation programmers are finding that the demands of video and
multi-media can challenge their system’s memory capacities beyond reasonable limits.  Small
memory software is back!

But what is small memory software?  Memory size, like riches or beauty, is always relative.
Whether a particular amount of memory is small or large depends on the requirements the
software should meet, on the underlying software and hardware architecture, and on much else.
A weather-calculation program on a vast computer may be just as constrained by memory limits
as a word-processor running on a mobile phone, or an embedded application on a smart card.
Therefore:

Small memory software is any software that doesn’t have as much memory as you’d like!

This book is written for programmers, designers and architects of small memory software.  You
may be designing and implementing a new system, maintaining an existing one, or merely
seeking to expand your knowledge of software design.

In this book we’ve described the most important programming techniques we’ve encountered in
successful small memory systems.   We’ve analysed the techniques as patterns – descriptions in
a particular form of things already known to work [Alexander 1977, 1979].   Patterns are not
invented, but are identified or mined from existing systems and practices.  To produce the
patterns in this book we’ve investigated the design of many successful systems that run on small
machines.  This book distils the essence of the techniques that seem most responsible for the
systems’ success.

The patterns in this book consider only limitations on memory: Random Access Memory
(RAM), and to a lesser extent Read Only Memory (ROM) and Secondary Storage, such as disk
or battery backed RAM.  A practical system will have many other limitations; there may be
constraints on graphics and output resources, network bandwidth, processing power, real-time
responsiveness, to name just a few.  Although we focus on memory requirements, some of these
patterns may help with these other constraints; others will be less appropriate: compression, for
example, may be unsuitable where there are significant constraints on processor power; paging
is unhelpful for real-time performance.  We’ve indicated in the individual patterns how they
may help or hinder supporting other constraints.

The rest of this chapter introduces the patterns in more detail.  The sections are as follows:
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How to use this book Suggests how you might approach this book if you don’t
want to read every page.

Introduction to Small
Memory

Describes the problem in detail, and contrasts typical kinds
of memory-constrained software.

Introduction to Patterns Introduces patterns and explains the pattern format used in
this book

The Patterns in this Book Suggests several different ways of locating, relating and
contrasting all the patterns in the book.
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How to use this book
You can, of course, start reading this book at page one and continue through to the end. But
many people will prefer to use this book as a combination of several things:

• A programmer’s introduction to small memory software.
• A quick overview of all the techniques you might want to use.
• A reference book to consult when you have a problem you need to solve.
• An implementation guide showing the tricks and pitfalls of using common – or less

common – patterns.

The following sections explain how to use this book for each of the above, and also for other
more specialised purposes:

• Solving a particular strategic problem
• Academic study
• Keeping the boss happy

A Programmer’s Introduction to Small Memory Software.
Perhaps you’re starting as a new developer on a memory-constrained project, and haven’t
worked on these kinds of projects before.

If so, you’ll want to read about the programming and design-level patterns that will affect your
daily work.  Often your major design concern will initially be class design, so start with the
straightforward and fun PACKED DATA (ppp).  You can then continue exploring several other
SMALL DATA STRUCTURE patterns used a lot in memory-limited systems: SHARING (PPP), COPY-ON-
WRITE (PPP) and EMBEDDED POINTER (PPP).

The immediate choices in coding are often how to allocate data structures, so next compare the
three common forms of memory allocation:  FIXED ALLOCATION (PPP), VARIABLE ALLOCATION (PPP)
and MEMORY DISCARD (PPP).   Equally important is how you’ll have to handle running out of
memory, so have a look at the important PARTIAL FAILURE (PPP) pattern, and perhaps also the
simple MEMORY LIMIT (PPP) one.

Finally, most practical small memory systems will use the machine hardware in different ways
to save memory.  So explore the possibilities of READ-ONLY MEMORY (PPP), APPLICATION

SWITCHING (ppp) and DATA FILES (PPP).

The description of each of these patterns discusses how other patterns complement them or
provide alternatives, so by reading these patterns you can learn the most important techniques
and get an overview of the rest of the book.

Quick Overview of all the Techniques
A crucial benefit of a collection of patterns is that it creates a shared language of pattern names
to use when you’re discussing the topic [Gamma Helm Johnson Vlissides 1995, Coplien 1996].
To learn this language, you can scan all the patterns quickly, reading the main substance but
ignoring all the gritty details, code and implementation notes.  We’ve structured this book to
make this easy to do.  Start at the first pattern (SMALL ARCHITECTURE, page XXX) and read
through each pattern down to the first break:

v v v

This first part of the pattern provides all you really need to know about it: the problem, its
context, a simple example, and the solution.  Skimming all the patterns in this way takes a
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careful reader couple of hours, and provides an overview of all the patterns with enough detail
that you can begin to remember the names and basic ideas of the patterns.

Reference for Problem Solving
Perhaps you’re already working on a project, in a desperate hurry, but faced with a thorny
problem with no simple answer. In this case, first consult the brief summaries of patterns in the
front cover.  If one or more patterns look suitable, then turn to each one and read its bullet
points and ‘Therefore’ paragraph to see if it’s really what you’re after.

If that approach doesn’t produce a perfect match, then use the index to look for keywords
related to your problem, and again scan the patterns to see which are suitable.

If none of the patterns you’ve found so far are quite what you want, then have a look at the
summary pattern diagram in the back cover – there may be useful patterns related to the ones
you’ve already checked.  Check the ‘See Also’ sections at the end of the patterns that seem most
useful; perhaps one of the related patterns might address your problem.

Implementation Guide
Perhaps you’ve already decided that one or more of the patterns are right for you.  You may
have known the technique all along, although you’ve not thought of it as a pattern, and you’ve
decided – or been told – to use it to implement part of your system.

In this case you can consult the full text for each specific pattern you’ve chosen.  Find the
pattern using the summary in the front cover, and turn to the Implementation section for a
discussion of many of the issues you’ll come across in using the pattern, and some of the
techniques other implementers have successfully used to solve them.  If you prefer looking at
specifics like code, turn to the Example section first and then move back to the Implementation
section.

You can also look at the Known Uses section – perhaps the systems will be familiar and you
can find out how they’ve implemented the pattern, and the ‘See Also’ section guides you to
other patterns you may find useful.

Helping Define a Project Strategy
If you’re defining the overall strategy for a software project [Goldberg and Rubin 1995], you’ll
probably be concerned about many other issues in addition to memory restrictions.  Maybe
you’re worried about time performance, real-time constraints, a hurried delivery schedule or a
need for the system to last for several decades.

In this case turn to the discussion in appendix XXX.  These concerns are called ‘forces’
[Alexander 1979].  Scan the chapter to identify the forces you’re interested in; the sections on
each force will tell you which patterns will best suit your needs.

Academic Study
Of course many people still enjoy reading books from start to finish. We have written this book
so that it can also be read in this traditional, second millennium style.

Each chapter starts with the simpler patterns that are easy to understand, and progresses
towards the more sophisticated patterns; the patterns that come first in a chapter lead to the
patterns that follow afterwards.  The chapters make a similar progression, starting with the
large-scale patterns you are most likely to need early in a project (Architectural Patterns) and
progressing to the most implementation-specific patterns (Memory Allocation).
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Keeping the Boss Happy
Maybe you really don’t care about this stuff at all, but your manager has bought this book for
you and you want to retain your credibility.   In this case, leave the book open face down on a
radiator for three days.  The book will then look as though you’ve read it, without any effort
required on your part [Covey 1990].
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Introduction to Small Memory
What makes a system small?  We expect that the patterns in this book will be most useful for
systems with memory capacities roughly between 50K to 10M bytes total, although many of the
patterns are frequently used with much smaller and even much larger systems.

Here are four different kinds of projects that can have difficult meeting their memory
requirements, and consequently can benefit from the patterns in this book:

1. Mobile Computing

Palmtops, pagers, mobile phones, and similar devices are becoming increasingly important.
Users of these mobile machines are demanding more complex and feature-ridden software,
ultimately comparable to that on their desktops.  But, compared to desktop systems, a portable
device’s hardware resources, particularly memory, are quite limited.  Because of their
ubiquitous nature [Norman 1998] these machines also need to be more robust than desktop
machines —  a digital diary with no hard disk cannot be restarted without loosing its data.

Developments for such machines must take far more care with memory constraints than in
similar applications for PCs and Workstations.  Virtually all the patterns in this book may be
relevant to any given project.

2. Embedded Systems

A second category of physically small device is embedded systems such as process control
systems, medical systems and smart-cards.  When a posh new car can have more than a
hundred microprocessors in it, and with predictions that we’ll all have several embedded
microprocessors in our bodies within the next decade, this is a very important area.

Embedded devices are limited by their memory, and have to be robust, but in addition they often
have to meet hard real-time processing deadlines.  If they are life critical or mission critical they
must meet stringent quality control and auditing requirements too.

In systems with memory capacity is much below about 50 Kbytes, the software must be tightly
optimised for memory, and typically must make drastic tradeoffs of functionality to fit into the
available memory.  In particular, the entire object-orientated paradigm, though possible,
becomes less helpful as heap allocation becomes inappropriate.  When implementing systems
below 50K, the Allocation and Data Structure patterns are probably the most important.

3. Small Slice of a Big Pie

Many ostensibly huge machines —  mainframes, minicomputers or PC servers—  can also face
problems with memory capacity.  These very large machines are most cost-effective when
supporting hundreds, thousands, or even hundreds of thousands of simultaneous sessions. Even
though they are physically very large, with huge physical memory capacities and
communication bandwidths, their large workloads often leave relatively modest amounts of
memory for each individual session.

For example, most Java virtual machines in 2000 require at least 10Mb of memory to run.  Yet
a Java-based web server may need to support ten thousand simultaneous sessions.  Naively
replicating a single user virtual machine for each session would require a real hardware server
with 100 Gigabytes of main memory, not counting the memory required for the application on
each virtual machine. The patterns in this book, particularly the Data Structure patterns, can
increase the capacity of such servers to support large numbers of users.
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4. Big Problems on Big Machines

In single-user systems with a memory capacity greater than 10 Mbytes, memory is rarely the
major concern for most applications, but general-purpose computers can still suffer from
limited memory capacity.

For example, organisations may have a large investment in particular hardware with a set
memory capacity that it is not feasible to increase.  What happens if you’re a bank with twenty
thousand three-year old PCs sitting on your tellers’ desks and would like to upgrade the
software?  What happens if you bought a new 1 Gigabyte server last year, can’t afford this
year’s model, but need to process 2 Gigabytes this year?  Even if you could afford to upgrade
the machines, other demands (such as your staff bonus) may have higher priority.

Alternatively, you may be working on an application that must handle very large amounts of
data, such as multi-media editing, video processing, pattern recognition, weather prediction, or
maintaining a collection of detailed bitmap images of the entire world.  Any such application
could easily exhaust the RAM in even a large system, so you’ll need careful design to limit its
memory use.  For such applications, the Secondary Storage and Compression patterns are
particularly important.

Ultimately, no computer can ever have enough memory.  Users can always run more
simultaneous tasks, process larger data sets, or simply choose a less expensive machine with a
lower physical memory capacity.  In a small way, every machine has small memory.

Types of Memory Constraint
Imagine you’re just starting a new project in a new environment.  How can you determine which
memory constraints are likely to be a problem, and what types of constraint will give the most
trouble?

Hardware Constraints.

Depending on your system, you may have constraints on one or more of the following types of
memory:

RAM Memory Used for executing code, execution stacks, transient data and
persistent data.

ROM Memory Used for executing code and read-only data.

Secondary Storage Used for code storage, read-only data and persistent data.

You may also have more specific constraints: for example stack size may be limited, or you
may have both dynamic RAM, which is fast but requires power to keep its data, and static
RAM, which is slower but will keep data with very little power.

RAM is usually the most expensive form of memory, so many types of system keep code on
secondary storage and load it into RAM memory only when it’s needed; they may also share the
loaded code between different users or applications.

Software Constraints

Most software environments don’t represent their memory use in terms of main memory, ROM
and secondary storage.  Instead, as a designer, you’ll usually find yourself dealing with heap,
stack and file sizes. Table XXX below shows typical attributes of software and how each maps
to the types of physical memory discussed above.
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Attribute Where it Lives

Persistent data Secondary storage or RAM.

Heap and static data RAM

Code Storage Secondary storage or ROM

Executing Code RAM or ROM

Stack RAM

Different Types of Memory-Constrained System

Different kinds of systems have different resources and different constraints. Table 3 describes
four typical kinds of system: embedded systems, mobile phones or digital assistants, PCs or
workstations, and large mainframe servers.  This table is intended to be a general guide, and
few practical systems will match it exactly. An embedded system for a network card will most
certainly have network support, for example; many mainframes may provide GUI terminals;  a
games console might lie somewhere between an embedded system and a PDA.

Embedded
System

Mobile Phone
PDA

PC,
Workstation

Mainframe or
Server Farm

Typical
Applicat-
ions

Device control,
protocol
conversion, etc.

Diary, Address
book, Phone,
Email

Word
processing,
spreadsheet,
small database,
accounting.

E-commerce,
large database
applications,
accounting,
stock control.

UI None. GUI; libraries in
ROM

GUI, with
several possible
libraries as
DLLs on disk

Implemented by
clients, browsers
or terminals

Network None, Serial
Connection, or
Industrial LAN

TCP/IP over a
wireless
connection

10MBps LAN 100 MBps LAN

Other IO As needed –
often the main
purpose of
device

Serial
connections

Serial and
parallel ports,
modem, etc.

Any, accessed
via LAN

Table 3: Comparison of different kinds of system

All these environments will normally keep transient program and stack data in RAM, but differ
considerably in their other memory use.  Table XXX below shows how each of these kinds of
system typically implements each kind of software memory.

Embedded
System

Mobile Phone,
PDA

PC,
Workstation

Mainframe or
Server Farm

Vendor-
supplied
Code

ROM ROM On disk, loaded
to RAM

Disk, loaded to
RAM
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3rd Party
Code

None Loaded to RAM
from flash
memory

As vendor-
supplied code

As vendor-
supplied code

Shared
Code

None DLLs shared
between multiple
applications

DLLs shared
between multiple
applications

DLL and
application code
shared between
multiple users

Persistent
Data

None, or RAM RAM or flash
memory.

Local hard disk
or network
server.

Secondary disk
devices.

Table 1: Memory Use on each Type of System

Note how mobile phones and PDAs treat third-party code differently from vendor-supplied
code, since the former cannot live in ROM.

Relative Importance of Memory Constraints

Table 4 shows the importance of the different constraints on memory for typical applications on
each kind of system discussed above. Three stars mean the constraint is usually the chief driver
for a typical project architecture; two stars mean it is an important design consideration.  One
star means the constraint that may need some effort from programmers but probably won’t
affect the architecture significantly; and no stars mean it’s virtually irrelevant to development.

Embedded
System

Wireless PDA PC,
Workstation

Mainframe or
Server Farm

Code Storage ** **
Code Working Set ** *
Heap and Stack *** ** * *
Persistent Data *** *

Table 4: Importance of Memory Constraints

In practice, every development is different; there will be some smart-card applications that can
virtually ignore the restrictions on heap and stack memory, just as there will be some mainframe
applications where the main constraint is on persistent storage.



Introduction to Patterns Small Memory Software by Weir, Noble Forces

© 2000 Charles Weir, James Noble Page 14

Introduction to Patterns
What, then, actually is a pattern?  The short answer is that a pattern is a “solution to a problem
in a context” [Alexander 1977,Coplien 1996]. This focus on context is important, because with
a large number of patterns it can be difficult to identify the best patterns to use.  All the patterns
in this book, for example, solve the same problem – too little memory – but they solve it in
many different ways.

A pattern is not just a particular solution to a particular problem. One of the reasons
programming is hard is that no two programming problems are exactly alike, so a technique that
solves one very specific problem is not much use in general [Jackson 1995].  Instead, a pattern
is a generalised description of a solution that solves a general class of problems —  just as an
algorithm is a generalised description of a computation, and a program is a particular
implementation of an algorithm.  Because patterns are general descriptions, and because they
are higher-level than algorithms, you should not expect the implementation to be the same every
time they are used.  You can’t just cut out some sample code describing a pattern in this book,
paste it into your program and expect it to work.  Rather, you need to understand the general
idea of the pattern, and to apply that in the context of the particular problem you face.

How can you trust a pattern?  For a pattern to be useful, it must be known to work.  To enforce
this, we’ve made sure each pattern follows the so-called Rule of Three: we’ve found at least
three known uses of the solution in practical systems.  The more times a pattern has been used,
the better, as it then describes a better proven solution. Good patterns are not invented; rather
they are identified or ‘mined’ from existing systems and practices.  To produce the patterns in
this book we’ve investigated the design of many successful systems that run on small machines.
This book distils the essence of the techniques that seem most responsible for the systems’
success.

Forces
A good pattern should be intellectually rigorous.  It should present a convincing argument that
that its solution actually solves its problem, by explaining the logic that leads from problem to
solution. To do this, a good pattern will enumerate all the important forces in the context and
enumerate the positive and negative consequences of the solution.  A force is ‘any aspect of the
problem that should be considered when solving it’ [Buschmann et al 1996], such as a
requirement the solution must meet, a constraint the solution must overcome, or a desirable
property that the solution should have.

The most important forces the patterns in this book address are: memory requirements, the
amount of memory a system occupies; and memory predictability, or whether this amount can
be determined in advance.  These patterns also address many other forces, however, from real-
time performance to usability.  A good pattern describes both its benefits (the forces it
resolves), and its disadvantages (the forces it exposes).  If you use such a pattern you may have
to address the disadvantages by applying another pattern [Meszaros and Doble 1998].

The Appendix discusses the major forces addressed by the patterns in this collection, and
describes the main patterns that can resolve or expose each force.  There’s also a summary in
the table printed inside the back cover.

Collections of Patterns
Some patterns may stand alone, describing all you need to do, but many are compound patterns
[Vlissides 1998; Riehle 1997] and present their solution partially in terms of other patterns.
Applying one pattern resolves some forces completely, more forces partially, and also exposes
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some forces that were not yet considered. Other, usually smaller-scale, patterns can address
problems left by the first pattern, resolving forces the first pattern exposes.

Alexander organised his patterns into a pattern language, a sequence of patterns from the
highest level to the lowest, where each pattern explicitly directed the reader to subsequent
patterns.  By working through the sequence of patterns in the language, an architect could
produce a complete design for a whole room, building, or city [Alexander 1977].

The patterns in this book are not a pattern language in that sense, and we certainly have not set
out to describe every programming technique required to build a complete system! Where
practical, however, we have described how the patterns are related, and how using one pattern
can lead you to consider using other patterns. The most important of these relationships are
illustrated in the diagram printed inside the back cover.

A Brief History of Patterns
Patterns did not originate within programming.  A Californian architect, Christopher Alexander
developed the pattern form as a tool for recording knowledge of successful building practices
(architectural folklore) [Alexander 1977, 1979]. Kent Beck and Ward Cunningham adapted
patterns to software, writing a few patterns than were used to design user intefaces at
Textronix. The ‘Hillside Group’ of software engineers developed techniques to improve pattern
writing, leading to the PLoP series of conferences.

Gamma, Helm, Johnson and Vlissides, developed patterns for object-oriented frameworks in
their 1995 book ‘Design Patterns’.  Many other valuable pattern books have followed,
particularly Patterns of Software Architecture [Buschmann 1996], Analysis Patterns [Fowler
1997], the Addison-Wesley Pattern Languages of Program Design series, and more specialist
books, such as the Smalltalk companion to Design Patterns [Alpert, Brown and Woolf 1998],
etc.  You can now find patterns on virtually any aspect of software development using the
Patterns Almanac [Rising 2000].

How We Wrote This Book
To produce this particular collection of patterns, we built up a comprehensive list of memory
saving techniques that we’d seen in software, been told about, seen on the web, or just known
about all along.  We then pruned out any techniques that seemed related but that didn’t actually
save memory (such as bank switching or power management), and any techniques outside the
scope of this book (UI design, project management).  The result was several hundred different
ideas, known uses and examples.

We then grouped them together, looking for a number of underlying themes or ideas that
provided a set of underlying techniques.  Each technique formed the basis for a pattern, and we
wrote them up as a draft that was presented at a pattern writers workshop in 1998 [Noble and
Weir 1998, Noble and Weir 2000].  As we built up a set of draft patterns, and received
comments, criticism and suggestions, we ‘refactored’ [Fowler 1999] the patterns to give a more
complete picture, expanding the scope of one pattern and reducing or changing the thrust of
another.  We analysed the major forces addressed by each pattern, and the relationships between
the patterns, to find a good way to arrange the patterns into a coherent collection. The result is
what you’re reading now.

Like any story after the fact, this step-by-step approach wasn’t exactly what happened in
practice.  The reality was much more organic and creative; it took place over several years, and
most of the steps happened in parallel throughout that time: but in principle it’s accurate.
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Our Pattern Format
All the patterns in this book use the same format.  Consider the example (overleaf/on the facing
page), an abbreviated version of one of the data structure patterns.  The full pattern is on page
XXX.

Packed Data
Also Known As: Bit Packing

How can you reduce the memory needed to store a data structure?

• You have a data structure (a collection of objects) that has significant memory
requirements.

• You need fast random access to every part of every object in the structure…

No matter what else you do in your system, sooner or later you end up having to design low-
level data structures to hold the information your program needs…

For example, the Strap-It-On’s Insanity-Phone application needs to store all of the names and
numbers in an entire local telephone directory (200,000 personal subscribers)… .

Because these objects (or data structures) are the core of your program, they need to be easily
accessible as your program runs…

Therefore: Pack data items within the structure so that they occupy the minimum space.

There are two ways to reduce the amount of memory occupied by an object…

Consider each individual field in turn, and consider how much information that field really
needs to store.  Then, chose the smallest possible language-level data type that can store than
information, so that the compiler (or assembler) can encode it in the minimum amount of
memory space…

Considering the Insanity-Phone again, the designers realised that local phone books never cover
more than 32 area codes – so each entry requires only 5 bits to store the area code…

Consequences

Each instance occupies less memory reducing the total memory requirements of the system,
even though the same amount of data can be stored, updated, and accessed randomly…

However:   The time performance of a system suffers, because CPUs are slower at accessing unaligned
data…

v v v

Figure 1:  Excerpt from a Pattern

The example shows the sections of the pattern, which are as follows:

Pattern Name Every pattern has a unique name, which should also be memorable

Cartoon A cartoon provides an amusing visual representation of the solution.

Also Known As Any other common names for the pattern, or for variants of the pattern.

Problem
Statement

A single sentence summarises the main problem this pattern solves.

Context
Summary

Bullet points summarise each main force involved in the problem, giving an
at-a-glance answer to ‘is this pattern suitable for my particular problem?’
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Context
Discussion

Longer paragraphs expand on the bullet points: when might this pattern
apply; and what makes it a particularly interesting or difficult problem?
This section also introduces a simple example problem – often fanciful or
absurd – as an illustration.

Solution Therefore: A single sentence summarises the solution.

Solution
Description

Further paragraphs describe the solution in detail, sometimes providing
illustrations and diagrams.  This section also shows how the solution solves
the example problem.

Consequences This section identifies the typical consequences of using the pattern, both
advantages and disadvantages.  To distinguish the two, the positive
consequences are first, and the negative ones second, partitioned by the
word ‘However:’.  In this discussion, the important forces are shown in
italic; these forces are cross-referenced in the discussion in Chapter XXX.

Separator Three ‘v’ symbols indicate the end of the pattern description.

Throughout the text we refer to other patterns using SMALL CAPITALS: thus ‘PACKED DATA.’

This is all you need to read for a basic knowledge of each pattern.  For a more detailed
understanding – for example if you need to apply the pattern – every pattern also provides much
more information, in the following sections:

Implementation A collection of ‘Implementation Notes’ discuss the practical details of
implementing the pattern in a real system. This is usually the longest
section extending into several pages.

The instructions in the implementation notes are not obligatory; you may
find alternative, and better, ways to implement the pattern in a particular
context.  The notes capture valuable experience and it’s worth reading
them carefully before starting an implementation.

Example This section provides code samples from a particular, usually fairly simple,
implementation, together with a detailed discussion of what the code does
and why. We recommend reading this section in conjunction with the
Implementation section.

Our web site [www.smallmemory.com] provides the full source for most of
the samples.

Known Uses This section describes several successful existing systems that use this
pattern.  This section validates our assertion that the pattern is useful and
effective, and it also suggests places where you might look for further
information.

See Also This section points the reader to other related patterns in this book or
elsewhere.  This section may also refer you to books and web pages with
more information on the subject or to help further with implementation.
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Major Techniques and Pattern Relationships
We’ve grouped the patterns in this book into five chapters. Each chapter presents a Major
Technique for designing small memory software: Architecture, Secondary Storage,
Compression, Data Structures, and Allocation.

Each Major Technique is, itself, a pattern, though more abstract than the patterns it contains.
We’ve acknowledged that by using a variant of the same pattern format for Major Techniques
as for the normal patterns.

In each Major Technique, a ‘Specialised Patterns’ section summarises each pattern in the
chapter, replacing the ‘Example’ section. (see Figure XXX).

Specialised Patterns

The following sections describe six specialised patterns that describing ways architectural
decisions can reduce RAM memory use.  The figure below shows how they interrelate…

Partial Failure

Read Only
Memory

Captain Oates

Small
Interfaces

ROM HooksSharing Resource Files

Small
Architecture

Memory
Limit

The patterns in this chapter are as follows:

SMALL INTERFACES Design the interfaces between components to manage memory
explicitly, minimising the memory required for their implementation…

Figure 2:  Excerpt from a Major Technique

This diagram illustrates the relationships between the patterns in the chapter.  In the diagram,
the rectangle represents the Major Technique pattern; white ovals represent patterns in the
chapter; and grey ovals represent patterns in other chapters.  The relationships between the
patterns are shown as follows [Noble 1998]:

Uses If you’re using the left-hand pattern, you should also
consider using the right-hand one.  The smaller-scale
pattern on the right resolves forces exposed by the larger
pattern on the left.  For example if you are using the
READ-ONLY MEMORY pattern, you should consider use the
HOOKS pattern.
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Specialises If you are using the left hand pattern, you may want the
right-hand pattern in particular situations.  The right-
hand pattern is a more specialised version of the left-hand
one, resolving similar forces in more particular ways.
For example, RESOURCE FILES are a special kind of READ-
ONLY MEMORY.

Conflicts Both patterns provide alternative solutions to the same
problem.  They resolve similar forces in incompatible
ways.  For example, PARTIAL FAILURE and CAPTAIN OATES

both describe how a component can deal with memory
exhaustion; either by providing a reduced quality of
service, or by terminating another component.

The Running Example
We’ve illustrated many of the patterns with examples taken from a particularly memory-
challenged system, the unique Strap-It-OnTM wrist-mounted PC from the well-known company
StrapItOn.  This product, of course, includes the famous Word-O-Matic word-processor, with
its innovative Morse Code keypad and Voice User Interface (VUI).

Figure 3: The Strap-it-on

If you’re foolish enough to implement any of the applications we suggest, and make money out
of it, well good luck to you!
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The Patterns in this Book
We’ve chosen one particular order for the patterns in this book (see the table in the front inside
cover).  This order makes the patterns easy to learn, working top-down so that the first patterns
set the scenes for the patterns in later chapters.

There are many other valid ways to arrange or discuss the list patterns.  This section examines
from several different perspectives: the list of Major Techniques, the forces addressed by each
technique, different approaches to saving memory, and via case studies.  You may also like to
consult the discussion ‘Error! Reference source not found.’ on page XXX, which
recommends patterns according to the types of small software involved.

The Major Techniques
The patterns are organised into five Major Techniques, summarised in the following table:

Small Data Structures Defining data structures and algorithms that contrive to reduce
memory use.

Memory Allocation Mechanisms to assign a data structure from the ‘primordial
soup’ of unstructured available memory, and to return it again
when no longer required by the program.

Compression Processing-based techniques to reduce data sizes by
automatically compressing data.

Secondary Storage Using disk, or equivalent, as an adjunct to RAM.

Small Architecture Memory-saving techniques that require co-operation between
several components in a system.

The Forces Addressed by the Patterns
Another way to look at the patterns is to compare the forces addressed by each pattern.

Chapter XXX (Forces) discusses the forces in detail, and discusses which patterns address each
force.   Meanwhile the following two tables provide a partial summary of that chapter.  Table
XXX summarises ten of the forces we consider most important, and table XXX shows how the
patterns address each one.

Memory
Requirements

Does the pattern reduce the absolute amount of memory required to run the
system?

Memory
Predictability

Does the pattern make it easier to predict the amount of memory a system will
require in advance?

Real-time
Response

Does the pattern decrease the latency of the program’s response to events,
usually by making the run-time performance of the program predictable?

Start-up Time Does the pattern reduce the time between the system receiving a request to start
the program, and the program beginning to run?

Time
Performance

Does the pattern tend to improve the run-time speed of the system?

Local vs.
Global

Does the pattern tend to help encapsulate different parts of the application,
keeping them more independent of each other?

Secondary Does the pattern tend to shift memory use towards cheaper secondary storage in
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Storage preference to more expensive RAM?

Maintain-
ability

Does the pattern encourage better design quality?   Will it be easier to make
changes to the system later on?

Programmer
Effort

Does the pattern reduce the total programmer effort to produce a given system?

Testing cost Does the pattern reduce the total testing effort for the application development?

Table 2: Ten Important Forces

The following table shows how each pattern addresses these forces.  If the pattern generally
benefits you as far as this force is concerned (‘resolves the force’), it’s shown with a ‘Y’.  If it’s
generally a disadvantage (‘exposes the force’) that’s shown with an ‘N’.  Appendix XXX
explores these forces in much more detail.
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[Typesetter to replace N in table and paragraph with sad face L , and make those cells white
font on black background.

Typesetter to replace Y in table and paragraph with happy face ☺, black font on white
background.

Typesetter to replace O in table and paragraph with face K - black font on light grey
background

This table is duplicated in the inside back cover.]
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Architecture O Y Y O Y

Memory Limit Y Y O

Small Interfaces N Y Y Y Y O O

Partial Failure N Y Y N N Y

Captain Oates N Y O N N Y

Read-only Memory Y Y O N N Y

Hooks N Y Y N

Secondary Storage N N N N

Application Switching N Y Y O Y Y O Y N

Data Files N N O Y N Y N

Resource Files N N Y O

Packages N Y Y N N O

Paging N N Y Y Y Y Y

Compression N O N N N N

Table Compression O N

Sequence Compression O Y Y N

Adaptive Compression N N N N

Data Structures O Y O Y N O Y

Packed Data N Y N N

Sharing Y Y N O N N

Copy-on-Write O N Y N N N

Embedded Pointer Y Y N Y N N

Multiple Representations Y Y N Y O N
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Allocation O O O O Y

Fixed Allocation Y Y N Y O Y N

Variable Allocation N N Y N N Y Y N

Memory Discard Y Y Y Y Y Y N

Pooled Allocation Y Y N Y N

Compaction N N N N

Reference Counting N Y Y Y

Garbage Collection Y N Y N Y Y

Reduce Reuse Recycle
Environmentalists have identified three strategies to reduce the impact of human civilisation on
the natural environment:

• Reduce consumption of manufactured products and the production of waste products.

• Reuse products for uses other than that for which they were intended.

• Recycle the raw material of products to make other products.

Of these, reduction is the most effective; if you reduce the amount of waste produced you don’t
have to worry about how to handle it.  Recycling is the least effective; it requires a large
expenditure of energy and effort to produce new finished products from old waste.  The patterns
we have described can be grouped in a similar way. They can:

• Reduce a program’s memory requirements. Patterns such as PACKED DATA, SHARING, and
COMPRESSION reduce the amount of absolute memory required, by reducing data sizes
and removing redundancy.  In addition the SECONDARY STORAGE and READ ONLY MEMORY

patterns reduce RAM memory requirements by using alternative storage.

• Reuse memory for a different purpose. Memory used within a FIXED ALLOCATION or in
POOLED ALLOCATION is generally (re)used to store a number of different objects of
roughly the same type, one after another.  HOOKS allow software to reuse existing read-
only code rather than replacing it.

• Recycle memory for different uses at different types.  VARIABLE ALLOCATION, REFERENCE

COUNTING, COMPACTION, GARBAGE COLLECTION and CAPTAIN OATES all help a program to
make vastly different uses of the same memory over time.

Case Studies
This section looks at three simple case studies, and looks at the patterns you might use to
deliver a successful implementation in each case.

1. Hand-held Application
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Consider working on an application for a hand-held device such as Windows CE, PalmOs or an
EPOC smart-phone.

The application will have a GUI, and will need much of the basic functionality you’d expect of
a full-scale PC application.  Memory is, however, more limited than for a PC; acceptable
maximums might be 2Mb of working set in RAM, 700Kb of (non-library) code, and a couple of
Mb or so of persistent data according to the needs of each particular user.

Memory is limited for all applications on the device, including your own.  The SMALL

INTERFACES architectural pattern is ubiquitous and vital.  Applications will use RESOURCE FILES,
as dictated by the operating system style guide, and to keep code sizes and testing to a minimum
you’ll want to access the vendor-supplied libraries in READ ONLY MEMORY using the libraries’
HOOKS.  Since the environment supports many processes and yours won’t be running all the
time, you’ll need persistent data stored in DATA FILES.

The environment may mandate other architectural patterns:  PalmOs requires APPLICATION

SWITCHING; CE expects CAPTAIN OATES; and EPOC expects PARTIAL FAILURE. If you’re not
working for the system vendor then yours will be a ‘third party’ application loaded from
secondary storage, so you may use PACKAGES to reduce the code working set.

Most of your application’s objects will use VARIABLE ALLOCATION or MEMORY DISCARD.
Components where real-time performance is important –a communications driver, for example
– will use  FIXED ALLOCATIONand EMBEDDED POINTERS.

Classes that have many instances may use PACKED DATA, MULTIPLE REPRESENTATIONS, SHARING

or COPY-ON-WRITE to reduce their total memory footprint.  Objects shared by several
components may use REFERENCE COUNTING.

2. Smart-card Project

Alternatively, consider working on a project to produce the software for a smart-card – say a
PCMCIA card modem to fit in a PC.  Code will live in ROM (actually flash RAM used as
ROM), and there’s about 2Mb of ROM in total, however there’s only some 500K of RAM.
The only user interface is the Hayes ‘AT’ command set available via the serial link to the PC;
the modem is also connected to a phone cable.

The system code will be stored in the READ-ONLY MEMORY, along with  static tables required by
the modem protocols.  You’ll only need a single thread of control and a single, say 50K, stack.

The real-time performance of a modem is paramount, so most long lived objects will use FIXED

ALLOCATION.  Transient data wil use MEMORY DISCARD, being stored on the stack.  The system
will need lots of buffers for input and output, and these can use POOLED ALLOCATION; you may
also need REFERENCE COUNTING if the buffers are shared between components.

Much of the main processing of the modem is COMPRESSION of the data sent on the phone line.
Simple modem protocols may use SEQUENCE COMPRESSION; more complicated protocols will use
TABLE COMPRESSION and ADAPTIVE COMPRESSION.  To implement these more complicated
protocols you’ll require large and complicated data structures built up in RAM.  To minimise
the memory they use and improve performance, you can implement them with PACKED DATA and
EMBEDDED POINTERS.

3. Large Web Server Project

Finally you might be working on a Java web server, which will provide an E-commerce Web
and WAP interface to allow users to buy products or services.  The server will connect to
internal computers managing the pricing and stock control and to a database containing the
details of individual users, via a local-area network.
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RAM memory is relatively cheap compared with development costs, but there are physical
limits to the amounts of RAM a server can support.  The sever’s operating system provides
PAGING to increase the apparent memory available to the applications, but since most
transactions take a relatively short time you won’t want to have much of the memory paged out
at any time. There will be many thousands of simultaneous users, so you can’t afford simply to
assign dozens of megabytes to each one.

You can ues SHARING so that all the users share just one, or perhaps just a few Java virtual
machine instances.  Where possible data will be READ ONLY, to make it easy to share.  If the
transaction with each user can involve arbitrarily complex data structures you can enforce a
MEMORY LIMIT for each user.   Maintainability and ease of programming are important so
virtually all objects use VARIABLE ALLOCATION and GARBAGE COLLECTION.

The Internet connections to each user are a significant bottleneck, so you’ll use ADAPTIVE

COMPRESSION to send out the data, wherever the Web or WAP protocols support it.   Finally,
you may need to support different languages and page layouts for different users via RESOURCE

FILES.
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Major Technique: Small Architecture
How can you manage memory use across a whole system?

• Memory limitations restrict entire systems

• Systems are made up of many components

• Each component can be fabricated by a different team.

• Components’ memory requirements can change dynamically.

A system’s memory consumption is a global concern.  Working well in limited memory isn’t a
feature that you can incorporate into your program in isolation: you can’t ask a separate team of
programmers to add code your system hoping to reduce its memory requirements.  Rather,
memory constraints cross-cut the design of your system, affecting every part of it. This is why
designing software for systems for limited memory is difficult. [Buschmann, Meunier, Rohnert,
Sommerlad, and Stal, 1996; Shaw and Garlan 1996; Bass, Paul, and Kazman 1998; Bosch
2000].

For example, the Strap-It-On wrist-top PC’s has an email application supporting text in a
variety of fonts.  Unfortunately in early implementations it cached every font it ever loaded, to
improve performance there; but stored every email compressed, threw away attachments and
crashed if memory ran out loading a font, giving poor new performance and awful usability.
There’s no sense in one function limiting its memory use to a few hundred bytes when another
part of the program wastes megabytes, and then brings the system down when it fails to receive
them.

You could simply design your system as a monolithic single component: a “big ball of mud”
[Foote and Yoder 2000]. Tempting though this approach might be, it tends to be unsatisfactory
for any but the simplest systems, for several reasons:  it’s difficult to split the development of
such a system between different programmers, or different programming teams; the resulting
system will be difficult to understand and maintain, since every part of the system can affect
every other part; and you loose any possibility of buying in existing reusable components.

To keep control over your system, you can construct it from components that you can design,
build, and test independently. Components can be reused from earlier systems, purchased from
external suppliers, or built new; some may need specialised skills to develop; some may even be
commercially viable in their own right. Each component can be assigned to a single team, to
avoid several teams working on the same code [Szyperski  1999].

These components may be of many different kinds, and interact in many different ways: source
libraries to compile into the system; object libraries that must be compiled into an executable;
dynamic-linked libraries to load at run-time; run-time objects in separate address-spaces using
frameworks like CORBA, Java Beans or ActiveX; or simply separate executables running in
their own independent process.  All are logically separate components, and communicate, if they
communicate at all, through interfaces.

Unfortunately, separating a program into components doesn’t reduce its memory use. The whole
systems’ memory requirements will be the sum of the memory required by each component.
Furthermore, the memory requirements for each component, and so for the whole system, will
change dynamically as the system runs. Even though memory consumption affects the
architecture globally, it is still important that components can be treated separately as much as
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possible.  How can you make the system use memory effectively, and give the best service to its
users, in a system is divided into components?

Therefore: Make every component responsible for its own memory use.

A system’s architecture is more than just the design of its high-level components and their
interconnections: it also defines the system’s architectural strategies —  the policies, standards
and assumptions common to every component [Bass et al 1998; Brooks 1982].  The
architecture for a system for limited memory must describe policies for memory management
and ensure that each component’s allocations are feasible in the context of the system as a
whole.

In a system for limited memory, this means that each individual component must take explicit
responsibility for implementing this policy: for managing its own memory use.  In particular,
you should take care to design SMALL DATA STRUCTURES that require the minimum memory to
store the information your system needs.

Taking responsibility for memory is quite easy where a component allocates memory statically
(FIXED ALLOCATION); a component simply owns all the memory that is fixed inside it.  Where a
component allocates memory dynamically from a heap (VARIABLE ALLOCATION) it is more
difficult to assign responsibility; the heap is a global resource.  A good start is to aim to make
every dynamically allocated object or record be owned by one component at all times. [Cargill
1996].  You may need to implement a MEMORY LIMIT or allocate objects using POOLED

ALLOCATION for a component to control its dynamic memory allocation.  Where components
exchange objects, you can use SMALL INTERFACES to ensure some component always takes
responsibility for the memory required for the exchange.

A system architecture also needs to set policies for mediating between components’ competing
memory demands, especially when there is little or no unallocated memory.  You should ensure
that components suffer only PARTIAL FAILURE when their memory demands cannot be met,
perhaps by sacrificing memory from low priority components (CAPTAIN OATES) so that the
system can continue to operate until more memory becomes available.

For example, the software architecture for the Strap-It-On PC defines the Font Manager and the
Email Display as separate components.  The software architecture also defines a memory
budget, constraining reasonable memory use for each component.  The designers of the Font
Manager implemented a MEMORY LIMIT to reduce their font cache to a reasonable size, and the
designers of the Email Display component discovered they could get much better performance
and functionality than they had thought.  When the Email application displays a large email, it
uses the SMALL INTERFACE of the Font Manager to reduce the size of the Font Cache. Similarly,
when the system is running short of memory the font cache discards any unused items (CAPTAIN

OATES).

Consequences

Handling memory issues explicitly in a program’s architecture can reduce the program’s
memory requirements, increase the predictability of its memory use, and may make the
program more scalable and more usable.

A consistent approach to handling memory reduces the programmer effort required since the
memory policies do not have to be re-determined for each component.  Individual modules and
teams can co-ordinate smoothly to provide a consistent global effect, so users can anticipate the
final system’s behaviour when memory is low, increasing usability.
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In general, explicitly describing a system’s architecture increases its design quality improving
maintainability.

However:  designing a small architecture takes programmer effort, and then ensuring components are
designed according to the architecture’s rules takes programmer discipline.  Making memory
an architectural concern moves it from being a local issue for individual components and teams
to a global concern, involving the whole project. For example, developers may try to minimise
their components memory requirements at the expense of other components produced by other
teams.

Incorporating external components can require large amounts programmer effort if they do not
meet the standards set by the system architecture —  you may have to re-implement components
that cannot be adapted.

Designing an architecture to suit limited memory situations can restrict a program’s scalability
by imposing unnecessary restrictions should more memory become available.

v v v

Implementation

The main ideas behind this pattern are ‘consistency’ and ‘responsibility’.  By splitting up your
system into separate components you can design and build the system piece by piece; by having
a common memory policy you ensure that the resulting pieces work together effectively.

The actual programming mechanism used to represent components is not particularly important.
A component may be a class, a package or a namespace, a separate executable or operating
system process, a component provided by middleware like COM or CORBA, or an ad-hoc
collection of objects, data structures, functions and procedures. In an object-oriented system, a
component will generally contain many different objects, often instances of different classes,
with one or more objects acting as FACADES to provide an interface to the whole component.

Here are two further issues to consider when designing interfaces for components in small
systems:

1. Tailorability.

Different clients vary in the memory requirements they place on other components that they use.
This is especially the case for components that are designed to be reusable; such components
will be used in many different contexts, and those contexts may have quite different memory
requirements.

A component can address this by including parameters to tailor its memory use in its interface.
Clients can adjust these parameters to adapt the component to fit its context. Components using
FIXED ALLOCATION, for example, have to provide creation-time parameters to choose the
number of items they can store.  Similarly, components using VARIABLE ALLOCATION can
provide parameters to tune their memory use, such as maximum capacity, initial allocation, or
even the amount of free space (in a hash table, for example, leaving free space can increase
lookup performance).  Components can also support operations to control their behaviour
directly, such as requesting a database to compact itself, or a cache to empty itself.

For example, the Java vector class has several methods that control its memory use. Vectors can
be created with sufficient memory to hold a given number of items (say 10):

Vector v = new Vector(10);

This capacity can be increased dynamically (say to store twenty items):
v.ensureCapacity(20);
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The capacity can also be reduced to provide only enough memory for the number of elements in
the container, in this case one object.

v.addElement( new Object() );
v.trimToSize();

Allocating correctly sized structures can save a surprisingly large amount of memory and
reduce the load a component places on a low level memory allocator or garbage collector. For
example, imagine a Vector that will be used to store 520 items inserted one at a time.  The
vector class initially allocates enough space for 8 elements; when that is exhausted, allocates
twice as much space as it is currently using, copies its current elements into the new space, and
deallocates the old space.  To store 520 elements, the vector will resize itself seven times, finally
allocating almost twice the required memory, and having allocated about four times as much
memory in total.  In contrast, initialising the vector with 520 elements would have required one
call to the memory system and allocated only as much memory as required [Soukup 1994].

2.  Make clients responsible for components’ memory allocation.

Sometimes a component needs to support several radically different policies for allocating
memory —   some clients might want to use POOLED ALLOCATION for each object allocated
dynamically within the package; others might prefer a MEMORY LIMIT or to use MEMORY

DISCARD; and still others might want the simplicity of allocating objects directly from the
system heap.  How can you cater for all of these with a single implementation of the
component?

2.1. Callbacks to manage memory. A simple approach is to require the component to call
memory management functions provided by the client.  In non-OO environments, for example,
you can make the component call a function supplied by its client, and linking the client and
component together.  In C, you might use function pointers, or make the component declare a
function prototypes to be implemented by the library environment.  For example, the Xt
Window System Toolkit for the X Window System supports a callback function, the XAlloc
function hook; clients may provide a function to do the memory allocation (and of course,
another function to do the memory freeing) [Gilly and O’Reilly 1990].

2.2. Memory Strategy. In an object-oriented environment, you can apply the STRATEGY

pattern: define an interface to a family of allocation algorithms, and then supply the component
with the algorithm appropriate for the context of use.  For example, in C++, a strategy class can
simple provide operations to allocate and free memory:

class MemoryStrategy {
    virtual char* Alloc( size_t nBytes ) = 0; // returns null when exhausted.
    virtual void Free( char* anItem; ) = 0;
};

Particular implementations of the MemoryStrategy class then implement a particular strategy:
a PooledStrategy implements POOLED ALLOCATION, a LimitStrategy applies a MEMORY

LIMIT; a TemporaryHeapStrategy implements MEMORY DISCARD; and a HeapStrategy simply
delegates the Alloc and Free operations straight to the system malloc and free functions.

An alternative C++ design uses compile-time template parameters rather than runtime objects.
The C++ STL collection and string templates accept a class parameter (called Allocator) that
provides allocation and freeing functions [Stroustrup 1997].  They also provide a default
implementation of the allocator that uses normal heap operations.  So the definition of the
STL ‘set’ template class is:

template <class Key, class Compare = less<Key>,
          class Allocator = allocator> class set;
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Note how the Allocator template parameter defaults to allocator, the strategy class that
uses normal heap allocation.

Specialised Patterns

The following sections describe six specialised patterns that describing ways architectural
decisions can reduce RAM memory use.  The figure below shows how they interrelate. Two
other patterns in this book are closely related to the patterns in this chapter, and these patterns
are shown in grey.

Partial
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Read Only
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ROM HooksSharing
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Pooled
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Application
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Multiple
Representations

Copy-On-Write
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This chapter contains the following patterns:

MEMORY LIMIT enforces a fixed upper bound on the amount of memory a component can
allocate.

SMALL INTERFACES between components are designed to manage memory explicitly, minimising
the memory required for their implementation.

PARTIAL FAILURE ensures a component can continue in a ‘degraded mode’, without stopping its
process or losing existing data, when it cannot allocate memory.

CAPTAIN OATES improves the overall performance of a system, by surrendering memory used by
less important components when the system is running low on memory.

READ-ONLY MEMORY can be used to store components that do not need to be modified, in
preference to more constrained and expensive main memory.

HOOKS allow information stored in READ-ONLY MEMORY (or shared between components) to
appear to be changed

Known Uses
Object-oriented APIs designed to support different memory strategies include the C++ standard
template library [Stroustrup 1997] and the Booch components [Booch 1987].  These libraries,
and to a lesser extent the standard Java and Smalltalk collection classes, also provide
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parameters that adjust components’ strategies, for example, by preallocating the correct amount
of memory to hold an entire structure.

See Also
Many small architectures take advantage of SECONDARY STORAGE to reduce requirements for
main memory.  Architectures can also design SMALL DATA STRUCTURES to minimise their
memory use, and encourage SHARING of code and data between components.

Tom Cargill’s patterns for Localized Ownership [Cargill 1996] describe how you can ensure
every object is the responsibility of precisely one component at all times. The HYPOTH-A-SIZED

COLLECTION pattern [Auer and Beck 1996] describes how collections should be created with
sufficient capacity to meet their clients needs without extra allocations.

Software Requirements & Specifications [Jackson 1995] and Software Architecture [Shaw and
Garlan 1996] describe ways to keep a coherent architecture while dividing an entire system into
components. Software Architecture in Practice [Bass et al 1998] describes much about
software architecture; Design and Use of Software Architectures [Bosch 2000] is a newer book
that focuses in particular on producing product-lines of similar software systems. Patterns in
Software Architecture has a number of architecture-level patterns to help design whole systems
and is well worth reading [Buschmann et al 1996].

The Practice of Programming [Kernighan and Pike, 1999], the Pragmatic Programmer [Hunt
and Thomas 2000] and the High-Level and Process Patterns from the Memory Preservation
Society [Noble and Weir 2000] describe techniques for estimating the memory consumption of a
system’s components, and managing those estimates throughout a development project.
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Memory Limit
 Also Known As: Fixed-sized Heap, Memory Partitions

How can you share out memory between multiple competing components?

• Your system contains many components, each with its own demands on memory.

• Components’ memory requirements change dynamically as the program runs.

• If one component hogs too much memory, it will prevent others from functioning.

• You can define reasonable upper bounds on the memory required for each task.

As part of designing a SMALL ARCHITECTURE, you will have divided up your system into
architectural components, and made each component responsible for its own memory use.  Each
components’ memory demands will change as the program runs, depending on the overall kind
of load being placed on the system.  If access to memory is unrestricted, then each component
will try to allocate as much memory as it might need, irrespective of the needs of other
components.  As other components also allocate memory to tackle their work, the system as a
whole may end up running out of memory.

For example, the Strap-It-On’s Virtual Reality “Stair Wars 1” game has several components:
virtual reality display, voice output, music overview, voice recognition, not to mention the
artificial intelligence brain co-ordinating the entire game plan.  Each of these tasks is capable of
using as much memory as it receives, but if every component tries to allocate a large amount of
memory there will not be enough to go round. You must apportion the available memory
sensibly between each component.

You could consider implementing the Captain Oates pattern, allowing components low on
memory to steal it from components with abundant allocations.  Captain Oates relies on the
goodwill of component programmers to release memory, however, and can be difficult and
complex to implement.

You could also consider budgeting components’ memory use in advance.  Just planning memory
consumption is also insufficient; however, unless there is some way to be sure that components
will obey the plans. This is trivial for components that use FIXED ALLOCATION exclusively, but
for others it can be difficult to model their dynamic behaviour to be sure they will not disrupt
your plans.

Therefore: Set limits for each component and fail allocations that exceed the limits.

There are three steps to applying the memory limit pattern.

1. Keep an account of the memory currently allocated by each component.  For example, you
might modify a component’s memory allocation routine to increase a memory counter when
allocating memory, and decrease the counter when deallocating memory.

2. Ensure components cannot allocate more memory then an allotted limit. Allocation
operations that would make a component exceed its limit should fail in exactly the same
way that they would fail if there were no more memory available in the system.
Components should support PARTIAL FAILURE so that they can continue running even when
they are at the limit.

3. Set the limits for each component, ideally by experimenting with the program and
examining the memory use counters for each component. Setting the limits last may seem to
be doing things backwards, but, in practice, you will have to revise limits during
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development, or alternatively allow users to adjust them to suit their work. So, build the
accounting mechanisms first, experiment gathering usage information, and then set the
memory use policies that you want enforced.

Should the sum of the limits for each component be equal or greater than the total available?
The answer depends on whether all the tasks are likely to be using their maximum memory limit
simultaneously. This is unlikely in practice, and the main purpose of the Memory Limit pattern
is to prevent a single component from hogging all the memory. It is generally sufficient to
ensure that the limit on each task is a reasonable fraction of the total memory available.

Note that it’s only worth implementing a limit for components that make variable demands on
memory.  A memory limit provides little benefits for components where most data structures
use FIXED ALLOCATION and the memory use doesn’t vary significantly with time.

In the ‘Stair Wars’ program, for example, the artificial intelligence brain component uses
memory roughly in proportion to the number of hostile and friendly entities supported.   By
experimenting with the game, the developers determined a maximum number of such entities,
and then adjusted brain component’s memory limit to provide enough memory to support the
maximum.  On the other hand, the screen display component allocates a fixed amount of
memory, so Stair Wars doesn’t apply an extra memory limit for this component.

Consequences
Because there are guaranteed limits on the memory use of each component, you can test each
one separately, while remaining sure that it will continue to work the same way in the final
system.  This increases the predictability of the system.

By examining the values of the memory counters, it’s easy to identify problem areas, and to see
which components are failing due to insufficient memory at run-time, increasing the
localisation of the system.

Implementing a simple memory counter takes only a small amount of programmer effort.

However: Some tasks may fail due to lack of memory while others are still continuing normally; if the
tasks interact significantly, this may lead to unusual error situations which are difficult to
reproduce and test.  A component can fail because it’s reached its memory limit even when
there is plenty of memory in the system; thus the pattern can be wasteful of memory.  Most
simple memory counters mechanisms don’t account for extra wastage due to fragmentation (see
the MEMORY ALLOCATION chapter). On the other hand, more complex operating system
mechanisms such as separate heaps for each component tend to increase this same
fragmentation wastage.

v v v

Implementation
There are several alternative approaches to implementing memory limits.

1. Intercepting Memory Management Operations.

In many programming languages, you can intercept all operations that allocate and release
memory, and modify them to track the amount of memory currently allocated quite simply.
When the count reaches the limit, further memory allocations can fail until deallocations return
the count below the limit.  In C++, for example, you can limit the total memory for a process by
overriding the four global new and delete operators [Stroustrup 1995].
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A memory counter doesn’t need to be particularly accurate for this pattern to work.  It can be
sufficient to implement a count only of the major memory allocations: large buffers, for
example.   If smaller items of allocated memory are allocated in proportion to these larger items,
then this limit indirectly governs the total memory used by the task.    For example, the different
entities in the Stair Wars program each use varying amounts of memory, but the overall
memory use is roughly proportional to the total number of entities, so limiting them
implemented an effective memory limit.

In C++ you can implement a more localised memory limit by overriding the new and delete
operators for a single class – and thus for its derived classes.  This approach also has the
advantage that different parts of the same program can have different memory limits, even when
memory is allocated from a single heap [Stroupstrup 1997].

2. Separate Heaps.

You can make each component use a separate memory heap, and manage each heap separately,
restricting their maximum size.  Many operating systems provide support for separate heaps
(notable Windows and Windows CE) [Microsoft 97, Boling 1998].

3. Separate processes.

You can make each component an individual process, and use operating system or virtual
machine mechanisms to limit each component’s memory use. EPOC, and most versions of Unix
allow you to specify a memory limit for each process, and the system prevents processes from
exceeding these limits.  Using these limits requires little programmer effort, especially the
operating systems also provides tools that can monitor processes memory use so that you can
determine appropriate limits for each process. Of course, you have to design or whole system so
that separate components can be separate processes —   depending on your system, this can be
trivial or very complex.

Many operating systems implement heap limits using virtual memory.  They allocate the full
size heap in the virtual memory address space (see the PAGING PATTERN); the memory manager
maps this to real memory only when the process chooses to access each memory block.  Thus
the heap sized is fixed in virtual memory, but until it is used there’s no real memory cost at all.
The disadvantage of this approach is that very few virtual memory systems can detect free
memory in the heap and restore the unused blocks to the system.  So in most VM systems a
process that uses its full heap will keep the entire heap allocated from then on.

Examples
The following C++ code restricts the total memory used by a MemoryResrictedClass and its
subclasses.  Exceeding the limit triggers the standard C++ out of memory exception,
bad_alloc.  Here the total limit is specified at compile time, as LIMIT_IN_BYTES:

class MemoryRestrictedClass {
public:
    enum { LIMIT_IN_BYTES = 10000 };
    static size_t totalMemoryCount;

    void* operator new ( size_t aSize );
    void operator delete( void* anItem, size_t aSize );
};

size_t MemoryRestrictedClass::totalMemoryCount = 0;

The class must implement an operator new that checks the limit and throws an exception:
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void* MemoryRestrictedClass::operator new ( size_t aSize ) {
    if ( totalMemoryCount + aSize > LIMIT_IN_BYTES )
        throw ( bad_alloc() );
    totalMemoryCount += aSize;
    return malloc( aSize );
}

And of course the corresponding delete operator must reduce the memory count again:
void MemoryRestrictedClass::operator delete( void* anItem, size_t aSize ) {
    totalMemoryCount -= aSize;
    free( (char*)anItem );
}

For a complete implementation we’d also need similar implementations for the array versions of
the operators [Stroustrup 1995].

In contrast, Java does not provides allocation and deletion operations in the language.  It is
possible however to limit the number of instances of a given class by keeping a static count of
the number of instances created. Java has no simple deallocation call, but we can use
finalisation to intercept deallocation. Note that many Java virtual machines do not implement
finalisation  efficiently (if at all), so you should consider this code as an example of one possible
approach, rather than as recommended good practice [Gosling et al 1996].

The following class permits only a limited number of instances.  The class counts the number of
its instances, increasing the count when a new object is constructed, and decreasing the count
when it is finalized by the garbage collector. Now, since objects can only be finalized when the
garbage collector runs, at any given time there may be some garbage objects that have not yet
been finalised.  To ensure we don’t fail allocation unnecessarily, the constructor does an explicit
garbage collection before throwing an exception if we are close to the limit.

class RestrictedClass
{
    static final int maxNumberOfInstances = 5;
    static int numberOfInstances = 0;

    public RestrictedClass() {
        numberOfInstances++;
        if (numberOfInstances > maxNumberOfInstances) {
            System.gc();
        }
        if (numberOfInstances > maxNumberOfInstances) {
            throw new OutOfMemoryError("RestrictedClass can only have " +
                                       maxNumberOfInstances + " instances");
        }
    }

There’s a slight issue with checking for memory in the constructor: even if we throw an
exception, the object is still created.   This is not a problem in general, because the object will
eventually be finalized unless one of the superclass constructors stores a reference to the object.

The actual finalisation code is trivial:
    public void finalize() {
        --numberOfInstances;
    }
};

v v v

Known Uses
By default, UNIX operating systems put a memory limit on each user process [Card et al 1998].
This limit prevents any one process from hogging all the system memory as only processes with
system privileges can override this limit.  The most common reason for a process to reach the
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limit is a continuous memory leak: after a process has run for a long time a memory request will
fail, and the process will terminate and be restarted.

EPOC associates a heap with each thread, and defines a maximum size or each heap.  There is
a default, very large, limit for applications, but server threads (daemons) are typically created
with rather smaller limits using an overloaded version of the thread creation function
RRhread::Create [Symbian 1999]. The EPOC culture places great importance on avoiding
memory leaks, so the limit serves to limit the resources used by a particular part of the system.
EPOC servers are often invisible to users of the system, so it is important to prevent them from
growing too large.  If a server does reach the memory limit it will do a PARTIAL FAILURE,
abandoning the particular request or client session that discovered the problem rather than
crashing the whole server [Tasker et al 2000].

Microsoft Windows CE and Acorn Archimedes RICS OS allow users to adjust the memory
limits of system components at runtime. Windows CE imposes a limit on the amount of memory
used for programs, as against data, and RISC OS imposes individual limits on every component
of the operating system [Boling 1998, RISC OS 2000].

Java virtual machines typically provide run-time flags to limit the total heap size, so you can
restrict the size of a Java process [Lindholm and Yellin 1999].  The Real-Time Specification for
Java will support limits on the allocation of memory within the heap [Bollella et al 2000].

See Also
Since it’s reasonably likely a typical process will reach the limit, it’s better to suffer a PARTIAL

FAILURE rather than failing the whole process. Using only FIXED ALLOCATION (or POOLED

ALLOCATION)  is a simpler, but less flexible, technique to apportion memory among competing
components.
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Small Interfaces
How can you reduce the memory overheads of component interfaces?

• You are designing a SMALL ARCHITECTURE where every component takes responsibility for
its own memory use.

• Your system has several components, which communicate via explicit interfaces.

• Interface designs can force components or their clients to allocate extra memory, solely for
inter-component communication.

• Reusable components require generic interfaces, which risk needing more memory than
would be necessary for a specific example.

You are designing a SMALL ARCHITECTURE, and have divided your system into components with
each component responsible for its own memory use.  The components collaborate via their
interfaces.  Unfortunately the interfaces themselves require temporary memory to store
arguments and results.  Sending a large amount of information between components can require
a correspondingly large amount of memory.

For example, the Strap-It-On ‘Spookivity’ ghost hunter’s support application uses a
compressed database in ROM with details of every known ghost matching given specifications.
Early versions of the database component were designed for much smaller RAM databases, so
they implemented a ‘search’ operation that simply returned a variable sized array of structures
containing copies of full details of all the matching ghosts.  Though functionally correct, this
interface design meant that Spookivity required a temporary memory allocation of several
Mbytes to answer common queries – such as “find ghosts that are transparent, whitish, floating
and dead”- an amount of memory simply not available on the Strap-It-On.

Interfaces can also cause problems for a SMALL ARCHITECTURE by removing the control each
component has over memory allocation.  If an object is allocated in one component, used by
another and finally deleted by a third, then no single component can be responsible for the
memory occupied.  In the Spookivity application, although the array of ghost structures was
allocated by the database component it somehow became the responsibility of the client.

Reusable components can make it even more difficult to control memory use.  The designer of a
reusable component often faces questions about the trade-offs between memory use and other
factors, such as execution speed or failure modes. For example, a component might pre-allocate
some memory buffers to support fast response during normal processing:  how much memory
should it allocate?   The answers to such questions depend critically on the system environment;
they may also depend on which client is using the component, or even depend on what the client
happens to be doing at the time.   The common approach – for the designer to use some idea of
an ‘average’ application to answer such questions – is unlikely to give satisfactory results in a
memory limited system.

Therefore:  Design interfaces so that clients control data transfer.

There are two main steps to designing component interfaces:

1. Minimise the amount of data transferred across interfaces. The principles of ‘small
interfaces’ [Meyer 1997] and ‘strong design’ [Coplien 1994] say that an interface
should present only the minimum data and behaviour to its client. A small interface
should not transmit spurious information that most components or their clients will not
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need. You can reduce the amount of memory overhead imposed by interfaces by
reducing the amount of data that you need to be transfer across them.

2. Determine how best to transfer the data.  Once you have identified the data you need to pass
between components, you can determine how best to transfer it.  There are many
different mechanisms for passing data across interfaces, and we discuss the most
important of them in the Implementation section.

For example, later versions of the Spookivity Database ‘search’ method returned a database
ITERATOR object [Gamma et al 1995].  The iterator’s ‘getNext’ function returned a reference
to a ‘GhostDetails’ result object, which provided methods to return the data of each ghost in
turn.  This also allowed the implementers of the database component to reuse the same
GhostDetails object each time; their implementation contained only a database ID, which they
changed on each call.  The GhostDetails methods accessed their data directly from the high-
speed database.  The revised interface required only a few bytes of RAM to support, and since
the database is itself designed to use iterators there was no cost in performance.

Consequences
By considering the memory requirements for each component’s interface explicitly, you can
reduce the memory requirements for exchanging information across interfaces, and thus for the
system as a whole.  Because much of the memory used to pass information across interfaces is
transient, eliminating or reducing interface’s memory overheads can make your program’s
memory use more predictable, and support better real-time behaviour.  Reducing inter-
component interface memory requirements reduces the overheads of using more components in
a design, increasing locality and design quality and maintainability.

However:  Designing small interfaces requires programmer discipline, and increases team co-
ordination overheads. A memory-efficient interface can be more complex, and so  require more
code and programmer effort and increase testing costs.  As with all designs that save memory,
designing small interfaces may increase time performance.

v v v

Implementation
There are a number of issues and alternatives to consider when using designing interfaces
between components in small systems.  The same techniques can be used whether information is
passing ‘inward’ from a client to a server, in the same direction as control flow (an efferent flow
[Yourdon and Constantine 1979]), or ‘outward’ from component to client (an afferent flow).

1. Passing data by value vs. by reference.

Data can be passed and returned either by value (copying the data) or by reference (passing a
pointer to the data).  Passing data by reference usually requires less memory than by value, and
saves copying time.  Java and Smalltalk programs usually pass objects by reference. Passing
references does means that the components are now SHARING the data, so the two components
need to co-operate somehow to manage the responsibility for its memory.  On the other hand, in
pass-by-value the receiving components must manage the responsibility for the temporary
memory receiving the value. as well. Pass-by-value is common in C++, which can DISCARD

stack memory.

2. Exchanging memory across interfaces.

There are three common strategies for a client to transfer memory across a component interface:
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• Lending — some client’s memory is lent to the supplier component for the duration of the
clients call to the supplier (or longer).

• Borrowing — the client gets access to an object owned by the supplier component.

• Stealing —  the client receives an object allocated by the supplier, and is responsible for its
deallocation.

When information is passed inward the client can often lend memory to the component for the
duration of the call.   Returning information ‘outward’ from component to is more difficult.
Although clients can lend memory to a supplier, it is often easier for the client to borrow a
result object from the server, and easier still for the client to steal a result object and use it
without constraint.

The following section describes and contrasts each of these three approaches.  For convenience,
we describe a component that returns a single result object; but the same sub-patterns apply
when a number of objects are returned.

2.1. Lending: The client passes an object into the component method, and the component uses
methods on the object to access its data.  If the client keeps a reference to the result object, it
can access the data directly, or the component can pass it back to the client. For example, the
following Java code sketches how an object using a word processor component could create a
new document properties object, and pass it to the word processor, which initialises it to
describe the properties of the current document.

DocumentProperties d = new DocumentProperties();
wordProcessor.getCurrentDocumentProperties( d );

The client can then manipulate the document properties object:
long docsize = d.getSize();
long doctime = d.getEditTime();

The client must also release the document properties object when it is no longer useful:
d = null;

because it has kept the responsibility for the document properties object’s memory.

Client Object Provider Object

d: Data

1. Get( d )

1.1 Set(1)

When lending memory to a component, the client manages the allocation and lifetime of the data
object (the document properties in this case), which may be allocated statically, or on the heap
or the stack.

Consider using lending to pass arguments across interfaces when you expect the client to have
already allocated all the argument objects, and when you are sure they will need all the results
returned.  Making the client own a result object obviously gives a fair amount of power and
flexibility to the client.  It does requires the client to allocate a new object to accept the results,
and take care to delete the object when it is not longer needed, requiring programmer discipline.
The component must calculate all the result properties, whether the client needs them or not.
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In C++ libraries a common form of this technique is to return the result by value, copying from
temporary stack memory in the component to memory lent by the client.

Another example of lending is where the client passes in a buffer for the component to use.  For
example in the BUFFER SWAP pattern, a component needs to record a collection of objects (e.g.
sound samples) in real-time and return them to the client. The client begins by providing a single
buffer to the main component, and then provides a new empty buffer every time it receives a
filled one back. [Sane and Campbell 1996].

2.2. Borrowing: The component owns a simple or composite object, and returns a reference to
that object to the client.  The client uses methods on the object to access its data, then signals to
the component when it no longer needs the object. For example, the word processor component
could let its client borrow an object representing the properties of the current document:

DocumentProperties d = wordProcessor.getDocumentProperties();

The client can then manipulate the document properties object:
long docsize = d.getSize();
long doctime = d.getEditTime();

but must tell the word processor when the properties object is no longer required.
wordProcessor.releaseDocumentProperties(d);

Client Object Provider Object

d: Data

1. Get(): d

2. Release( d )

1.
1

S
et

(1
)

Like lending, borrowing can be used to transfer data both in to and out of a component. Having
the component own the result object gives maximum flexibility to the component returning the
result. The component can allocate a new data object each time (VARIABLE DATA STRUCTURE),
or it can hold one or more instances permanently (FIXED DATA STRUCTURE), or some
combination of the two.

On the other hand, the component now has to manage the lifetime of the result object, which is
difficult if there are several clients or several data objects needed at a time.  Alternatively, you
can allocate only one result object statically, and recycle it for invocation. This requires the
client to copy the information immediately it is returned (effectively similar to an ownership
transfer). A static result object also cannot handle concurrent accesses, but this is fine as long
as you are sure there will only ever be one client at a time.

Alternatively, the component interface can provide an explicit ‘release’ method to delete the
result object.  This is rarer in Java and Smalltalk, as these languages make it clumsy to ensure
that the release method is called when an exception is thrown. This is quite common in C++
interfaces, as it allows the component to implement REFERENCE COUNTING on the object, or just
to do delete this in the implementation of the Release function.  For example, the EPOC
coding style [Tasker et al 2000] is that all interfaces (‘R classes’) must provide a Release
function rather than a destructor.  Consider using borrowing when components need to create or
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to provide large objects for their clients, and clients are unlikely to retain the objects for long
periods of time.

2.3. Stealing: The component allocates a simple or composite object, and transfers
responsibility for it to the client.  The client uses methods on the object to get data, then frees it
(C++) or relies on garbage collection to release the memory. For example, the wordprocessor
can let its client steal a document properties object:

DocumentProperties d = wordProcessor.getDocumentProperties();

allowing the client to use it as necessary,
long docsize = d.getSize();
long doctime = d.getEditlong();

but the client now has the responsibility for managing or deleting the object
d = null;

Client Object Provider Object

d: Data

1. Get(): d

1.
1

ne
w

(1
)2. delete

This example shows a client stealing an object originally belonging to a component, however,
components can also steal objects belonging to their clients when data is flowing from clients to
components.  Transferring responsibility for objects (or ownership of objects) is simple to
program, and is particularly common in languages such as Java and Smalltalk that support
garbage collection and don’t need an explicit delete operation.  In C++ it’s most suitable for
variable size structures, such as unbounded strings.  However in systems without garbage
collection, this technique can cause memory leaks unless great programmer discipline is used to
delete every single returned objects.  Ownership transfer forces the server to allocate a new
object to return, and this object needs memory.  The server must calculate all the properties of
the returned object, whether the client needs them or not, wasting processing time and memory.
Consider using stealing when components need to provide large objects that their clients will
retain for some time after receiving them.

3.  Incremental Interfaces.

It is particularly difficult to pass a sequence or collection of data items across an interface.  In
systems with limited memory, or where memory is often fragmented, there may not be enough
memory available to store the entire collection.  In these cases, the interface needs to be made
incremental —  that is, information is transferred using more than one call from the client to a
component, each call transferring only a small amount of information.  Incremental interfaces
can be used for both inward and outward data transfer.  Clients can either make multiple calls
directly to a component, or an ITERATOR can be used as an intermediate object.  Consider using
Iterator Interfaces when large objects need to be transferred across interfaces.

3.1. Client Makes Multiple Calls: The client makes several method calls to the component,
each call loaning a single object for the duration of the call.  When all the objects are passed,
the client makes a further call to indicate to the component that it’s got the entire collection, so
it can get on with processing. For example, a client can insert a number of paragraphs into a
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word processor, calling addParagraph to ask the word processor to take each paragraph, and
then processAddedParagraphs to process and format all the new paragraphs.

for (int i = 0; i < num_new_paras; i++) {
    wordProcessor.addParagraph(paras[i]);
};
wordProcessor.processAddedParagraphs();

Client Object Provider Object

d1: Data

1.
 n

ew
(1

)

2. Take(d1)

d2: Data
3. new(2)

4. Take(d2)

5. DoAction()

The client making multiple calls is easy to understand, and so is often the approach chosen by
novice programmers or used in non-OO languages.  However, it forces the component either to
find a way of processing the data incrementally (see DATA CHAINING), or to create its own
collection of the objects passed in, requiring further allocated memory.   Alternatively the client
can loan the objects for the duration of the processing rather than for each call, but this forces
the client to keep all the data allocated until the DoAction operation completes.

To return information from a component incrementally, the client again makes multiple calls,
but the component signals the end of the using a return value or similar.

spookivity.findGhosts("transparent|dead");
while (spookivity.moreGhostsToProcess()) {
    ghostScreen.addDisplay(spookivity.getNextGhost());
};

3.2 Passing Data via an Iterator:  Rather than make multiple calls, the client may lend an
iterator to the component.  The component then accesses further loaned objects via the iterator.
For example, the client can pass an iterator to one of its internal collections:

ghostScreen.displayAllGhosts(vectorOfGhosts.iterator());

and the component can use this iterator to access the information from the client:
void displayAllGhosts(Iterator it) {
    while (it.hasNext()) {
        displayGhost((Ghost) it.next());
    }
}

Passing in an iterator reverses the control flow, so that the component is now invoking messages
on the client.

Using an iterator is generally more flexible than making multiple calls to a special interface.
The component doesn’t have to store its own collection of objects, since it can access them
through the iterator.  It’s important that the interface uses an abstract iterator or abstract
collection class, however; a common interface design error is to use a specific collection class
instead, which constrains the implementation of the client.

3.3. Returning Data with a Writeable Iterator. A writable iterator is an iterator that insert
elements into a collection, rather than simply traverse a collection.  A writeable iterator
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produced by the client can be used to implement outward flows from component to client, in just
the same way that a normal iterator implements inward flows.

    Vector retrievedGhosts = new Vector();
    spookivity.findGhosts("transparent|dead");
    spookivity.returnAllGhosts(retrievedGhosts.writeableIterator());

Note that at the time of writing, the Java library does not include writeable iterators.

3.4. Returning data by returning an iterator.  Alternatively the client may borrow or steal an
iterator object from the component, and access returned values through that:

Iterator it = spookivity.findGhostsIterator("transparent|dead");
while (it.hasNext()) {
    ghostScreen.displayGhost((Ghost) it.next());
}

Returning an iterator keeps the control flow from the client to the component, allowing the
iterator to be manipulated by client code, or passed to other client components.

v v v

Known Uses
Interfaces are everywhere.  For good examples of interfaces suitable for limited memory
systems, look at the API documentation for the EPOC or PalmOs operating systems [Symbian
1999, Palm 2000].

Operating system file IO calls have to pass large amounts of information between the system
and user applications.  Typically, they require buffer memory to be allocated by the client, and
then read or write directly into their client side buffers. For example, the classic Unix [Ritchie
and Thompson 1978] file system call:

read(int fid, char *buf, int nchars);

reads up to nchars characters from file fid into the buffer starting at buf. The buffer is
simply a chunk of raw memory.

EPOC client-server interfaces always use lending, since the server is in a different memory
space to its client, and can only return output by copying it into memory set aside for it within
the client.  This ensures that memory demand is typically small, and that the client ‘s memory
requirements can be fixed at the start of the project.

Many standard interfaces use iterators. For example, the C++ iostreams library uses them
almost exclusively for access to container classes [Stroustrup 1997], and Java’z Zlib
compression library uses iterators (streams) for both input and output.

See Also
Interfaces have to support the overall memory strategy of the system, and therefore many other
memory patterns may be reflected in the interfaces between components.

Interfaces can supply methods to set up simulating a memory failure in the component to allow
EXHAUSTION TESTING of both client and component. Interfaces that return references to objects
owned by the component may SHARE these objects, and may use REFERENCE COUNTING or COPY

ON WRITE.

Interfaces, particularly in C++, can enforce constant parameters that refer to READ ONLY

MEMORY and thus may not be changed.  In other languages, such enforcement is part of the
interface documentation.  Where components use RESOURCE FILES, interfaces often specify
strings or resources as resource IDs rather than structures.  As well as reducing the amount of
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information passing across the interface, the memory costs of the resource can be charged to the
component that actually instantiates and uses it.

If the component (or the programming environment) supports MEMORY COMPACTION using
handles, then the interface may use handles rather than object references to specify objects in
the component.

The patterns for Arguments and Results [Noble 2000] and Type-Safe Session [Pryce 2000]
describe how objects can be introduced to help design interfaces between. Meyers’ Effective
C++ [1998] and Sutter’s Exceptional C++ [2000] describe good C++ interface design.  Tony
Simons has described some options using borrowing, copying and stealing for designing C++
classes [Simons 1998].
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Partial Failure
Also known as: Graceful degradation; Feast and Famine.

How can you deal with unpredictable demands for memory?

• No matter how much you reduce a program’s memory requirements,
 you can still run out of memory.

• It is better to fail at a trivial task than to rashly abandon a critical task.

• It is more important to keep running that to run perfectly all the time…

• …  And much more important to keep running than to crash.

• The amount of memory available to a system varies wildly over time.

No matter how much you do to reduce the memory requirements of your program, it can
always run out of memory. You can silently discard data you do not have room to store,
terminate processing with a rude error message, or continue as if you had received the memory
you requested so that your program crashes in unpredictable ways, but you can’t avoid the
problem. Implicitly or explicitly, you have to deal with running out of memory.  In a
‘traditional’ system, low memory conditions are sufficiently rare that it is not really worth
spending programmer effort dealing with the situation of running out of memory.  The default,
letting the program crash, is usually acceptable.  After all, there are lots of other reasons why
programs may crash, and users will hardly notice one or two more!  However in a memory-
limited system, low memory situations happen sufficiently often that this approach would
seriously affect the usability of the system, or even makes it unusable.

For example, the Word-O-Matic word processor provides voice output for each paragraph;
adds flashing colours on the screen to highlight errors in spelling, grammar and political
correctness; and provides a floating window that continuously suggests sentence endings and
possible rephrasing.  All this takes a great deal of memory, and frequently uses up all the
available RAM memory in the system.

There is some good news, however.  First, some system requirements are  more important than
others —  so if you have to fail something, some things are better to fail at than others.  Second,
provided your system can keep running failing to meet one requirement does not have to mean
that you will fail subsequent ones.  Finally, you are unlikely to remain short of memory
indefinitely. When a system is idle, its demands on memory will be less than when it is heavily
loaded.

In the Strap-It-On PC, for example, it’s more important that the system keeps running, and
keeps its watch and alarm timers up to date, than that any fancy editing function actually works.
Within Word-O-Matic, retaining the text users have laboriously entered with the two-finger
keypad is more important even than displaying that text, and much more important than spelling
or grammar checking and suggesting rephrasing.

Therefore:.  Ensure that running out of memory always leaves the system in a safe state.

Ensure that for every memory allocation there is a strategy for dealing with failure before it
propagates through your program.

When a program detects that its memory allocation has failed, its first priority must be to get
back to a safe, stable state as soon as possible, and clean up any inconsistencies caused by the
failure.  As far as possible this should happen without losing any data.  Depending on what was
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being allocated when memory ran out, it may be enough to back out of the action that required
the extra memory.  Alternatively you might reduce the functionality provided by one or more
components; or even shut down the component where the error occurred.

State 1 State 2 State 3

Processing
failsProcessing

Displaying
text

Displaying
more text

Displaying still
more textExamples:

Figure 1:  Failing the action that required the extra memory

What is vitally important, however, is to ensure that from the user’s point of view, an action
succeeds completely or fails completely, leaving the system in a stable state in either case.  User
interfaces, and component interfaces should make it clear when an important activity that
affects the user has failed: if some data has been deleted, or an computation has not been
performed.

Once a program has reached a stable state, it should continue as best it can. Ideally it should
continue in a ‘degraded mode’, providing as much functionality as possible, but omitting less
important memory-hungry features.  You may be able to provide a series of increasingly
degraded modes, to cater for increasing shortages of memory. Components can implement a
degraded mode by hiding their memory exhaustion from their clients, perhaps accepting
requests and queuing them for later processing, or otherwise offering a lower quality service.
For example the Word-O-Matic’s voice output module accepts but ignores commands from its
clients in its ‘out of memory’ state, which makes programming its clients much simpler.

State 1 State 2 State 3

Processing
fails

Processing

Out of
Memory

state

Figure 2:  Failing to an Out of Memory state.

Finally, a system should return to full operation when more memory becomes available.
Memory is often in short supply while a system copes with high external loads, once the load
has passed its memory requirements will decrease. Users directly determine the load on
multiprocessing environments like MS Windows and EPOC, so they can choose to free up
memory by closing some system applications. A component running in a degraded mode should
attempt to return to full operation periodically, to take advantage of any increase in available
memory.
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For example, when the Word-O-Matic fails to allocate the memory required for voice output of
a document, its display screen continues to operate as normal.  If the text checker fails, Word-
O-Matic doesn’t highlight any problems; if the floating window fails it doesn’t appear, and the
rest of the program carries on regardless. None of these fancier features are essential; and most
users will be quite happy with just a text display and the means to enter more text.

Consequences
Supporting partial failure significantly improves a program’s usability.  With careful design,
even the degraded modes can provide enough essential functionality that users can complete
their work.  By ensuring the program can continue to operate within a given amount of memory,
partial failure decreases the program’s minimum memory requirements and increases the
predictability of those requirements.

Supporting partial failure increases the program’s design quality – if you support partial failure
for memory exhaustion, it's easy to support partial failure (and other forms of failure handling)
for other things, like network faults and exhaustion of other resources.   Systems that support
partial failure properly can be almost totally reliable.

However: Partial Failure is hard work to program, requiring programmer discipline to apply
consistently and considerable programmer effort to implement.

Language mechanisms that support partial failure – exceptions and similar – considerably
increase the implementation complexity of the system, since programmers must cater for
alternative control paths, and for releasing resources on failure.

Partial Failure tends to increase the global complexity of the systems, because local events –
running out of memory – tend to have global consequences by affecting other modules in the
system.

Supporting partial failure significantly increases the complexity of each module, increasing the
testing cost because you must try to test all the failure modes.

v v v

Implementation
Consider the following issues when implementing Partial Failure:

1 Detecting Memory Exhaustion.

How you detect exhaustion depends on the type of MEMORY ALLOCATION you are using.  For
example, if you are allocating memory from a heap, the operation that creates objects will have
some mechanism for detecting allocation failure. If you are managing memory allocation
yourself, such as using FIXED ALLOCATION or allocating objects dynamically from a pool, then
you need to ensure the program checks to determine when the fixed structure or the memory
pool is full. The MEMORY ALLOCATION chapter discusses this in more detail.

How you communicate memory exhaustion within the program depends on the facilities offered
by your programming language. In many languages, including early implementations of C and
C++, the only way to signal such an error was to return an error code (rather than the allocated
memory). Unfortunately, checking the value returned by every allocation requires a very high
level of programmer discipline. More modern languages support variants of exceptions,
explicitly allowing functions to return abnormally. In most environments an out-of-memory
exception terminates the application by default, so components that implement PARTIAL FAILURE

need to handle these exceptions.
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2 Getting to a Safe State.

Once you have detected that you have run out of memory, you have to determine how to reach a
safe state, that is, how much of the system cannot continue because it absolutely required the
additional memory being available. Typically you will fail only the function that made the
request; in other situations the component may need a degraded mode, or, if a separate
executable, may terminate completely.

To determine how much of the system cannot be made safe, you need to examine each
component in turn, and consider their invariants, that is, what conditions must be maintained for
them to operate successfully [Hoare 1981, Meyer 1997].  If a components’ invariants are
unaffected by running out of memory, then the component should be able to continue running as
is. If the invariants are affected by the memory failure, you may be able to restore a consistent
state by deleting or changing other information within the component. If you cannot restore a
component to a safe state, you have to shut it down.

If you have to fail entire applications, you may be able to use APPLICATION SWITCHING to get to
a safe state.

3 Releasing Resources.

 A component that has failed to allocate the memory must tidy up after to ensure it has not left
any side effects. Any resources it allocated but can no longer use (particularly memory) must be
released, and its state (and that of any other affected components) must be restored to values
that preserve its invariants.

In C++, exceptions ‘unwind’ the stack between a throw statement and a catch statement
[Stroustrup 1997].  By default, all stack-based pointers between them are lost, and any
resources they own are orphaned. C++ exceptions guarantee to invoke the destructor on any
stack-based object, however, so any object on the stack can clean up in their destructors so that
they will be tidied up correctly during an exception.  The standard template class auto_ptr
wraps a pointer and deletes it when the stack is unwound.

auto_ptr<NetworkInterfaceClass> p(new NetworkInterfaceClass);
p->doSomethingWhichCallsAnException();  // the instance is deleted

Although Java has garbage collection, you still have to free objects (by removing all references
to them) and release external resources as the stack unwinds. Rather than using destructors, the
Java ‘try..finally’ construct will execute the ‘finally’ block whenever the ‘try’ block
exits, either normally or abnormally. This example registers an instance of a COMMAND

[Gamma et al 1995] subclass into a set, and then removes it from the set when an exception is
thrown or the command’s execute method returns normally.

Command cmd = new LongWindedCommand();
setOfActiveCommands.add(cmd);

try {
    cmd.execute();
}
finally {
    setOfActiveCommands.remove(cmd);
}

EPOC, as an operating system for limited memory systems, has Partial Failure as one of its
most fundamental architectural principles [Tasker et al 2000].  Virtually every operation can to
fail due to memory exhaustion; but such failure is limited as much as possible and never
permitted to cause a memory leak.  EPOC’s C++ environment does not use C++ exceptions,
rather an operating system TRAP construct.  Basically, a call to the leave method unwinds the
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stack (using the C longjmp function), until it reach a TRAP harness call. .  Client code adds and
removes items explicitly from a ‘cleanup stack’, and then leave method automatically invokes
a cleanup operation for any objects stored on the cleanup stack.  The top-level EPOC system
scheduler provides a TRAP harness for all normal user code.  By default that puts up an error
dialog box to warn the user the operation has failed, then continues processing.

Here’s an example of safe object construction in EPOC. [Tasker et al 2000].  A FACTORY

METHOD [Gamma et al 1995], NewL, allocates a zero-filled (i.e. safe) object using
new(Eleave), then calls a second function, ConstructL, to do any operations that may fail.
By pushing the uninitialised object onto the cleanup stack, if ConstructL fails then it will be
deleted automatically. Once the new object is fully constructed it can be removed from the
cleanup stack.

SafeObject* SafeObject::NewL( CEikonEnv* aEnv )
{
  SafeObject* obj = new (ELeave) SafeObject( aEnv );
  CleanupStack::PushL( obj );
  obj->ConstructL();
  CleanupStack::Pop(); // obj is now OK, so remove it
  return obj;
}

The CAPTAIN OATES pattern includes another example of the EPOC cleanup stack.

4. Degraded Modes.

 Once you’ve cleaned up the mess after your memory allocation has failed, your program should
carry on running in a stable state, even though its performance will be degraded. For example:

• Loading a font may fail; in this case you can use a standard system font.
• Displaying images may fail; you can leave them blank or display a message.
• Cached values may be unavailable; you can get the originals at some time cost.
• A detailed calculation may fail; you can use an approximation.
• Undo information may not be saved (usually after warning the user).

Wherever possible components should conceal their partial failure from their clients.  Such
encapsulation makes the components easier to design and localises the effect of the failure to
the components that detect it. Component  interfaces should not force clients to know about
these failure modes, although they can provide additional methods to allow interested clients to
learn about such failure.

You can often use MULTIPLE REPRESENTATIONS to help implement partial failure.

5. Rainy Day Fund.

Just as you have to spend money to make money, handling memory exhaustion can itself
require memory.  C++ and Java signal memory exhaustion by throwing an exception, which
requires memory to store the exception object; displaying a dialog box to warn the use about
memory problems requires memory to store the dialog box object.  To avoid this problem, set
aside some memory for a rainy day. The C++ runtime system, for example, is required to
preallocate enough memory to store the bad_alloc exception thrown when it runs out of
memory [Stroustrup 1997]. Windows CE similarly sets aside enough memory to display an out-
of-memory dialog box [Boling 1998]. The Prograph visual programming language takes a more
sophisticated approach   it supplies a rainy day fund class that manages a memory reserve
that is automatically released immediately after the main memory is exhausted [MacNeil and
Proudfoot 1985].
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Example
The following Java code illustrates a simple technique for handling errors with partial failure.
The method StrapFont.font attempts to find a font and ensure it is loaded into main memory.
From the client’s point of view, it must always succeed.

We implement a safe state by ensuring that there is always a font available to return.  Here, the
class creates a default font when it first initialises.  If that failed, it would be a failure of process
initialisation – implemented by new throwing an uncaught OutOfMemoryError – preventing the
user entering any data in the first place.

class StrapFont {

    static Font myDefaultFont =  new Font("Dialog",Font.PLAIN,12);

    public static Font defaultFont() {
        return myDefaultFont;
    }

The StrapFont.font method tries to create a new Font object based on the description
priavteGetFont method, which can run out of memory and throw and OutOfMemoryError. If
a new font object cannot be created then we return the default font.  This mechanism also allows
safe handling of a different problem, such as when the font does not exist:

    public static Font font(String name, int style, int size) {
        Font f;
        try {
            f = privateGetFont(name, style, size);
        }
        catch (BadFontException e) {
            return defaultFont();
        }
        catch (OutOfMemoryError e) {
            return defaultFont();
        }
        return f;
    }

}

The client must reload the font using StrapFont.font every time it redraws the screen, rather
than caching the returned value; this ensures that when memory becomes available the correct
font will be loaded.

v v v

Known Uses
Partial Failure is an important architectural principle. If a system is to support Partial Failure, it
must do so consistently.  A recent project evaluated a third-party database library for porting to
EPOC as an operating system service.  Everything looked fine: the code was elegant; the port
would be trivial.  Unfortunately the library, designed for a memory-rich system, provided no
support for partial failure; all memory allocations were assumed either to succeed or to
terminate the process.  In a service for simultaneous use by many EPOC applications that
strategy was unacceptable; memory exhaustion is common in EPOC systems, and the designers
couldn’t allow a situation where it would cause many applications to fail simultaneously. The
library was unsuitable because it did not support Partial Failure.

Degraded Modes are common in GUI applications.  If Netscape fails to load a font due to
insufficient memory, it continues with standard fonts. Microsoft PowerPoint will use standard
fonts and omit images.  PhotoShop warns the user and then stops saving undo information.
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At a lower level, if the Microsoft Foundation Class framework detects an exception while
painting a window, its default behaviour is to mark the window as fully painted.  This allows
the application to continue although the window display may be incorrect; the window will be
repainted when it is subsequently changed by the application.

EPOC’s Word Processor makes its largest use of memory when formatting part of a page for
display.  If this fails, it enters an out-of-memory mode where it displays as much of the text as
has been formatted successfully.  Whenever a user event occurs, (scrolling, or a redisplay
command) Word attempts to reformat the page, leaves its degraded mode if it is successful.
EPOC’s architecture also has an interesting policy about safe states.  The EPOC application
framework is event-driven; every application runs by receiving repeated function calls from a
central scheduler.  Every application is in a safe state when it is not currently executing from
the scheduler, so any EPOC application can fail independently of any other [Tasker et al 2000].

See Also
APPLICATION SWITCHING can fail an entire application and begin running another application,
rather than terminating an entire system of multiple applications.  MULTIPLE REPRESENTATIONS

can also support partial failure, by replacing standard representations with more memory
efficient designs.

An alternative to failing the component that needed the memory is to use the CAPTAIN OATES

pattern and fail a different and less important component.  The MEMORY ALLOCATION  chapter
describes a number of strategies for dealing with allocation failures, such as deferring requests,
discarding information, and signalling errors.

Ward Cunningham’s CHECKS pattern language discusses several ways of communicating partial
failure to the user. [Cunningham 1995].  Professional Symbian Programming [Tasker et al
2000], More Effective C++ [Meyers 1996] and Exceptional C++ [Sutter 2000] describe in
detail programming techniques and idioms for implementing Partial Failure with C++
exceptions.
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Captain Oates
Also known as: Cache Release.

How can  you fulfil the most important demands for memory?

• Many systems have components that run in the background.

• Many applications cache data to improve performance

• User’s care more about what they are working on than background activities the system
is doing for its own sake.

To the operating system all memory requirements appear equal.  To the user, however, some
requirements are more equal than others [Orwell 1945].

For example, when someone is using the Strap-It-On PC’s word processor to edit a document,
they don’t care what the fractal screen background looks like.  You can increase a system's
usability by spending scarce resources doing what users actually wants.

Many systems include background components, such as screen savers, chat programs,
cryptoanalysis engines [Hayes 1998], or Fourier analyses to search for extraterrestrial
intelligence [Sullivan et al 1997].  Systems also use memory to make users’ activities quicker or
more enjoyable, by downloading music, caching web pages, or indexing file systems.  Though
important in the longer term, these activities do not help the user while they are happening, and
take scarce resources from the urgent, vital, demands of the user.

Therefore:  Sacrifice memory used by less vital components rather than fail more important tasks.

Warn every component in the system when memory is running out, but while there is still some
space left. When a component receives this warning it should release its inessential memory, or
in more extreme situations, terminate activities.

If there is no support for signalling memory conditions, processes can keep track of the free
memory situation by regular polling, and free inessential resources (or close down) when
memory becomes short.

 For example when the Word-O-Matic is about to run out of memory the IP networking stack
empties its cache of IP address maps and the web browser empties its page cache.  Background
service processes like the ‘FizzyTM’ fractal generator automatically closes down.  Consequently,
the word processor’s memory requirements can be met.  Figure XXX illustrates a system-wide
implementation of the Captain Oates pattern:
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Figure 4: Result of the Memory Low Event

The name of this pattern celebrates a famous Victorian explorer, Captain Lawrence ‘Titus’
Oates. Oates was part of the British team led by Robert Falcon Scott, who reached the South



Captain Oates UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 29

Pole only to discover that Roald Amundsen’s Norwegian team had got there first.  Scott’s team
ran short of supplies on the way back, and a depressed and frostbitten Oates sacrificed himself
to give the rest of his team a chance of survival, walking out into the blizzard leaving a famous
diary entry: “I may be some time”. Oates’ sacrifice was not enough to save the rest of the team,
whose remains were found in their frozen camp the next year.  Thirty-five kilograms of rock
samples, carried laboriously back from the Pole, were among their remains [Limb and
Cordingley 1982; Scott 1913].

Consequences
By allocating memory where it is most needed this pattern increases the systems usability, and
reduces its memory requirements. Programs releasing their temporary memory also increase the
predictability of the system’s memory use.

However:  Captain Oates requires programmer discipline to consider voluntarily releasing resources.
Captain Oates doesn’t usually benefit the application that implements it directly, so the
motivation for a development team to implement it isn’t high –there needs to be strong cultural
or architectural forces to make them do so. The pattern also requires programmer effort to
implement and test.

Captain Oates introduces coupling between otherwise unrelated components, which decreases
the predictability of the system.  Releasing resources can reduce the program’s time
performance.  Programs need to be tested to see that they do release resources, and that they
continue to perform successfully afterwards.  Because many programs must handle the memory
low signal, Captain Oates is easier with operating system support. This is another global
mechanism that introduces local complexity to handle the signal.

v v v

Implementation
The main point of the Captain Oates pattern is that it releases memory from low priority
activities so that high priority activities can proceed.  It is inappropriate for a component to
release memory if it is supporting high-priority activities. Yet mechanisms that detect low
memory conditions are indiscriminate and notify all components equally. So how can you work
out what components to sacrifice?

A user interface application can usually determine whether is the current application, i.e.
whether it has the input focus so users can interact with it. If so, it should not sacrifice itself
when it receives low memory warnings.
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This
application has
highest priority

A background process, though, cannot usually ask the system how important they are. In MS
Windows, for example, high priority threads block waiting for some events —  the Task
manager has a high priority when waiting for Ctrl+Alt+Del key strokes. When the Task
Manager detects an event, however, it changes its priority down to a normal. So, calling
GetThreadPriority cannot give a true indication of how important the task is and whether it’s
being used.

Most processes, though, can determine how important they are from other information.  A
component managing network connections, for example, could check whether it had any active
connections. Other background processes may not even have that information; a web page
cache, for example, may have no direct information about the applications that it supports.
Such processes, however must not be directly interacting with the user (otherwise they would
have more information about users’ activities) and so can usually quite safely release inessential
resources when required.

1. Detecting Low Memory Conditions.

Many operating systems provide events that warn applications when memory is low.  MS
Windows and MS Windows CE send WM_COMPACTING and WM_HIBERNATE messages to all
windows (though not, therefore, to background processes) to warn them that the system memory
is getting low [Boling 1998,Microsoft 1997]. Rather than send events, some operating systems
or language runtimes call back to system components when memory is low —  one example,
C++’s new_handler, is discussed in the PARTIAL FAILURE pattern.

As an alternative, if the system provides functions to show how much memory is in use, then
each component can poll to see if memory is low, and release memory when it is.  Polling can be
unsatisfactory in battery-powered machines, however, since the processor activity uses battery
power.

2. Handling low memory events.

When a low memory even occurs, it’s useful if each component can determine how short of
memory the system is.  In the Java JDK 1.2 environment, the runtime object’s
getMemoryAdvice() call answers one of four modes: ‘green’ meaning there’s no shortage,
‘yellow’ then ‘orange’ meaning memory is getting low, and ‘red’ meaning memory is critically
low.   MS Windows’ event, WM_COMPACTING, sends an indication of the proportion of
time spent paging memory: 1/8 is equivalent to ‘yellow’, and is when the message is first sent;
anything over 1/4 is critically low [Microsoft 1997].
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3. Good Citizenship.

Perhaps the simplest, and often the easiest, approach is for each process to voluntarily give up
inessential resources they are not really using. By observing a simple timer, you can release
latent resources after a specific time, regardless of the memory status of the rest of the system.
For example, the EPOC Web browser loads dynamic DLLs to handle specific types of Web
data. If a particular type of data occurs once, it may recur almost immediately, so the Browser
DLL loader caches each DLL. If the DLL isn’t reused within a few seconds, however, the
loader releases it.

Example
This C++ example implements a piece of operating system infrastructure to support a simple
Captain Oates mechanism for the EPOC operating system.  The Captain Oates application runs
in the background and closes applications not currently in use when memory becomes low.
Since closing an EPOC application automatically saves its state (a requirement of the PC-
synchronisation mechanisms), this does not lose any data.  Transient editing state, such as the
cursor position in a document or the current item displayed in a file browser, is not maintained,
however.

The functionality is in class COatesTerminator, which is as follows (omitting function
declarations):

class COatesTerminator : public CBase {
private:
    RNotifier  iPopupDialogNotifier;    // Provides user screen output
    CPeriodic* iTimer;                  // Timer mechanism
    CEikonEnv* iApplicationEnvironment; // User I/O Handler for this app.

    enum {
        EPollPeriodInSeconds = 10,      // How often to check memory
        EDangerPercentage = 5 };        // Close applications when less free
                                        // memory than this.
};

There are various construction and initialisation functions (not included here) to set up the
periodic timer and dialog notifier.

The core of the application, however, is the TimerTickL function that polls the current memory
status and closes applications when memory is low.  The free memory reading can be
deceptively low if other applications have allocated more memory then they are using. If free
memory appears to be low on a first reading, we compress all the memory heaps; this claws
back any free pages of memory at the end of each heap.   Then a second reading will measure
all free memory accurately. If the second reading is also low, we call CloseAnApplicationL to
close an application.

void COatesTerminator::TimerTickL() {
    if ( GetMemoryPercentFree() <= EDangerPercentage ||
         (User::CompressAllHeaps(),
          GetMemoryPercentFree() <= EDangerPercentage ))  {
        CloseAnApplicationL();
    }
}

CloseAnApplicationL must first select a suitable application to terminate —  we do not want
to close the current foreground application, the system shell, or this process. Of the other
candidates, we’ll just close the one lowest in the Z order. Applications are identified to the
system as ‘window groups’ (WG).  To find the right window, we first get the identifiers of the
window groups we don’t want to close (focusWg, defaultWg, thisWg), get the
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WindowGroupList, then work backwards through the list, and close the first suitable
application we find.

Note also the use of the CleanupStack, as described in PARTIAL FAILURE.  We push the array
holding the WindowGroupList onto the stack when it is allocated, and then remove and destroy
it as the function finishes.  If the call to get the window group suffers an error, we immediately
leave the CloseAnApplicationL function, automatically destroying the array as it is on the
cleanup stack.

void COatesTerminator::CloseAnApplicationL() {
    RWsSession& windowServerSession = iApplicationEnvironment->WsSession();

    TInt foregroundApplicationWG =  windowServerSession.GetFocusWindowGroup();
    TInt systemShellApplicationWG = windowServerSession.GetDefaultOwningWindow();
    TInt thisApplicationWG =        iApplicationEnvironment->RootWin().Identifier();

    TInt nApplications=windowServerSession.NumWindowGroups(0);
    CArrayFixFlat<TInt>* applicationList=
                                    new (ELeave) CArrayFixFlat<TInt>(nApplications);
    CleanupStack::PushL( applicationList );
    User::LeaveIfError( windowServerSession.WindowGroupList(0,applicationList) );
    TInt applicationWG=0;
    TInt i= applicationList->Count();
    for (i--; i>=0; i--)  {
        applicationWG = applicationList->At( i );
        if (applicationWG != thisApplicationWG &&
            applicationWG != systemShellApplicationWG &&
            applicationWG != foregroundApplicationWG)
            break;
    }

If we find a suitable candidate, we use a standard mechanism to terminate it cleanly.  Note that
_LIT defines a string literal that can be stored in ROM – see the READ ONLY MEMORY pattern.

    if (i >= 0) {
        TApaTask task(windowServerSession);
        task.SetWgId(applicationWG);
        task.EndTask();
        _LIT( KMessage, "Application terminated" );
        iPopupDialogNotifier.InfoPrint( KMessage );
    }
    CleanupStack::PopAndDestroy(); // applicationList
}

This implementation has the disadvantage that it requires polling, consuming unnecessary CPU
time and wasting battery power.  A better implementation could poll only after writes to the
RAM-based file system (straightforward), after user input (difficult), or could vary the polling
frequency according to the available memory.

v v v

Known Uses
The MS Windows application ‘ObjectPLUS’, a hypercard application by ObjectPLUS of
Boston, responds to the WM_COMPACTING message.  As the memory shortage becomes
increasingly critical, it:

• Stops playing sounds
• Compresses images
• Removes cached bitmaps taken from a database

Though this behaviour benefits other applications in the system, it also benefits the HyperCard
application itself by releasing memory for other more important activities.  By implementing the
behaviour in the Windows event handler, the designers have kept that behaviour architecturally
separate from other processing in the application.
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The Apple Macintosh memory manager (discussed in COMPACTION) supports “purgeable
memory blocks” —  that the memory manager reclaims when memory is low [Apple 1985].
They are used for RESOURCE FILES, and file system caches, and dynamically allocated program
memory.

MS Windows CE Shell takes a two phase approach to managing memory [Microsoft 1998,
Boling 1998]. When memory becomes low, it sends a WM_HIBERNATE message to every
application.  A CE application should respond to this message by releasing as many system
resources as possible.  When memory becomes even lower, it sends the message WM_CLOSE to
the lowest priority applications, asking those applications to close —  like EPOC, Windows CE
requires applications to save their state on WM_CLOSE without prompting the user.  Alternatively,
if more resources become available, applications can receive the WM_ACTIVATE message,
requesting them to rebuild the internal state they discarded for WM_HIBERNATE.

A number of distribued internet projects take advantage of Captain Oates by running as
screensavers. When a machine is in use, the screensavers do not run, but after a machine is idle
for a few minutes the screensaver uses the idle processor to search for messages from aliens
[Hayes 1998] or crack encrypted messages [Sullivan et al 1997].

See Also
Where CAPTAIN OATES describes what a program should do when another process in the system
runs out of memory, PARTIAL FAILURE describes what a process should do when it runs out of
memory itself.  Many of the techniques for PARTIAL FAILURE (such as MULTIPLE

REPRESENTATIONS and PROGRAM CHAINING) are also appropriate for CAPTAIN OATES.

FIXED ALLOCATION describes a simple way to implement a form of CAPTAIN OATES, where each
activity is merely a data structure – simply make new activities overwrite the old ones.

Scott and his team are popular heroes of British and New Zealand culture. See ‘Captain Oates:
Soldier and Explorer’ [Limb and Cordingley 1982], and ‘Scott’s Last Expedition: The
Personal Journals of Captain R. F. Scott, R.N., C.V.O., on his Journey to the South Pole.’
[Scott 1913].
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Read-Only Memory
Also known as: Use the ROM

What can you do with read-only code and data?

• Many systems provide read-only memory as well as writable memory

• Read-only memory is cheaper than writable memory

• Programs do not usually modify executable code.

• Programs do not modify resource files, lookup tables, and other pre-initialised data.

Programs often have lots of read-only code and data. For example, the Word-O-Matic word-
processor has a large amount of executable code, and large master dictionary files for its
spelling checker, which it never changes.  Storing this static information in main memory will
take memory from data that does need to change, increasing the memory requirements of the
program as a whole.

Many hardware devices   particularly small ones  support read-only memory as well as
writable main memory.  The read-only memory may be primary storage, directly accessible
from the processor, or indirectly accessible secondary storage.  A wide range of technologies
can provide read-only memory, from semiconductor ROMs and PROMS of various kinds,
through flash ROMs, to read-only compact discs and even paper tape.  Most forms of read-only
memory are better in many ways than corresponding writable memory —  simpler to build, less
expensive to purchase, more reliable, more economical of power, dissipating less heat, and more
resistant to stray cosmic radiation.

Therefore: Store read-only code and data in read-only memory.

Divide your system code and data into those portions that can change and those that never
change. Store the immutable portions in read-only memory and arrange to re-associate them
with the changeable portions at run-time.

Word-O-Matic’s program’s code, for example, is contained in ROM memory in the Strap-It-On
portable PC. Word-O-Matic’s master dictionary and other resource files are stored in in read-
only secondary storage (flash ROM); only user documents and configuration files are stored in
writeable memory.

Consequences
This pattern trades off writable main storage for read-only storage, reducing the memory
requirements for main storage and making the it easier to test..  Read-only storage is cheaper
than writable storage, in terms of financial cost, power consumption and reliability.  If the
system can execute programs directly from read-only memory, then using read-only memory
can decrease the system’s start-up time.

Although you may need to copy code and data from read-only secondary storage to main
memory, you can delete read-only information from main memory without having to save it
back to secondary storage.  Because they cannot be modified, read-only code and data can be
shared easily between programs or components, further reducing the memory requirements of
the system as a whole.

However: programmer effort is needed to divide up the program into read-only and writable portions,
and then programmer discipline to stick to the division.  The disctinction between read-only
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and writeable inforamtion is fundamentally a global concern, although it must be made locally
for every component in the program.

Code or data in read-only memory is more difficult to maintain than information in writable
secondary storage.  Often, the only way to replace code or data stored in read-only memory is to
physically replace the hardware component storing the information.  Updating flash memory,
which can be erased and rewritten, usually requires a complicated procedure particuarly if the
operating system is stored in the memory being updated.

v v v

Implementation
Creating a ‘ROM Image’ (a copy of the final code and data to be stored into read-only
memory)is invariably a magical process, requiring major incantations and bizarre software
ingredients that are specific to your environment.  Across most environments, however, there
are common issues to consider when using read-only memory.

1. Storing Executable Code.

If you can run programs directly from read only memory, then you can use it to store executable
code.  This generally poses two problems: how should the code be represented in read-only
memory, and how can it get access to any data it needs?

Most environments store programs as object files   such as executables and dynamic linked
libraries   that do not refer to any absolute addresses in memory, instead containing symbolic
references to other files or libraries. Before object files can be executed, the operating system’s
run-time loader must bind the symbolic references to create completely executable machine
code.

To store this executable code in read-only memory you need an extra tool, the ‘ROM builder’,
that does the job of the run-time loader, reading in object files and producing a ROM Image.  A
ROM Builder assigns each object file a base address in memory and copies it into the
corresponding position in the ROM image, binding symbolic references and assigning writable
memory for heap memory, static memory, and static data.  For example, the EPOC system
includes a Java ROM builder takes the ‘jar’ or ‘class’ files, and loads them into a ROM image,
mimicking the actions of the Java run-time class loader.
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If the system starts up by executing code in read-only memory, then the ROM image will also
need to contain initialisation code to allocate main memory data structures and to bootstrap the
whole system.  The ROM Builder can know about this bootstrap code and install it in the
correct place in the image.

2. Including Data within Code.

Most programs and programming languages include constant data as well as executable code 
if the code is being stored in read-only memory, then this data should accompany it.  To do this
you need to persuade the compiler or assembler that the data is truly unchangeable.

The C++ standard [Ellis and Stroustrup 1990], for example, defines that instances of objects
can be placed in the code segment   and thus in read-only memory   if:

• The instance is defined to be const, and

• It has no constructor or destructor.

Thus
const char myString[] = "Hello";   // In ROM
char* myString = "Hello";          // Not in ROM according to the Standard.
const String myString( "Hello" );  // Not in ROM, since it has a constructor

In particular you can create C++ data tables that can be compiled into ROM:
const int myTable[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };  // In ROM

Note that non-const C++ strings are generally not placed in the code segment, since they can
be modified, but some compilers support flags or #pragma declarations to change this
behaviour.

The EPOC system uses a combination of C++ macros and template classes to create instances
of strings in read-only memory, containing both a length and the text, as follows:
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template <TInt S> class TLitC {
// Various operators...

public:
int iTypeLength;  // This is the structure of a standard EPOC string
char iBuf[S];
};

#define _LIT(name,s) const static TLitC<sizeof(s)> name={sizeof(s)-1,s}

This allows EPOC code to define strings in ROM using the _LIT macro:
_LIT( MyString, "Hello World" );
User::InfoPrint( MyString ); // Displays a message on the screen.

The linker filters out duplicate constant definitions, so you can even put _LIT definitions in
header files.

2.1.  Read-only objects in C++.  C++ compilers enforce const as far as the bitwise state of
the object is concerned: const member functions may not change any data member, nor may a
client delete an object through a const pointer [Stroupstrup 1997]. A well-designed class will
provide logical const-ness by ensuring that any public function is const if it doesn’t change
the externally visible state of the object.  For example, the simple String class below provides
both a ‘logically const’ access operator, and a non-const one.  A client given using a const
String& variable can use only the former.

class String {
public:
  // Constructors etc. not shown...
  char operator[]( int i ) const { return rep[i]; }
  char& operator[]( int i ) { return rep[i]; }
private:
  char* rep;
};

C++ supports passing parameters by value, which creates a copy of the shared object on the
stack.  If the object is large and if the function does not modify it, it’s common C++ style to
SHARE the representation by passing the object as a const reference.  Thus:

void function( const String& p );

is usually preferable to
void function( String p );

because it will use less stack space.

2.2. Read-only objects in Java.  Java lacks const, and so is more restrictive on what data can
be stored with the code in read-only memory   only strings and single primitive values are
stored in Java constant tables. For example, the following code

final int myTable[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };  // Don't do this!

compiles to a very large function that constructs myTable, assigning values to an array in main
memory element by element.  Storing data for Java programs in read-only memory is thus quite
complex. You can encode the data as two-byte integers and store in a string; use C++ to
manage the data and access it via the Java Native Interface; or keep the data in a resource file
and use file access calls [Lindholm and Yellin 1999].

3. Static Data Structures. Some programs require relatively large constant data structures, for
example:

• Encryption algorithms, such as the US Data Encryption Standard (DES).

• Mathematical algorithms, such as log, sine and cosine functions.
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• State transition tables, such as those generated by tools to support the Shlaer-Mellor
object-oriented methodology [1991].

These tables can be quite large, so its usually not a good idea to store them in main memory, but
since they are constant, they can be moved to read-only memory.  Managing the development of
these data structures can be quite a large task, however.

If the table data changes often during the development process, the best approach is to use a
tool to generate the table as a separate file that is incorporated by the ROM Image builder. If
the data changes very rarely, then it’s usually easiest to copy the table manually into the code,
and modify it or the surrounding code to ensure the compiler will place it into read-only
memory.

 4. Read-Only File Systems.

Some environments can treat read-only memory as if it were a file system. This has the
advantage that file system structures can organise the read-only data, and that applications can
read it through the normal file operations, although they cannot modify it.  For example, EPOC
supports a logical file system (Z:), normally invisible to users, which is stored in read-only
memory and constructed by the EPOC ROM Builder. All the Resource Files for ROM-based
applications are stored in this file system.

File system access is usually slower than direct memory access. If read-only memory can be
mapped into applications’ address spaces, the data in a ROM filing system can be made
available directly, as an optimisation.  For example, the EPOC Bitmap Server uses the function
User::IsFileInROM to access bitmap data directly from ROM.

5. Version Control

Different versions of ROM images will place the same code or data at different addresses.  You
need to provide some kind of index so that other software in the system can operate with
different ROM versions. For example, ROM images often begin with a table of pointers to the
beginning of every routine and data structure: external software can find the correct address to
call by indirection through this table [Smith 1985].

The HOOKS pattern describes how you can store the table in writable memory, so that routines
can be extended or replaced with versions stored in writable memory.

Example
The following example uses a read-only lookup table to calculate the mathematical sine function
for a number expressed in radians.  Because the example is in Java, we must encode the table as
a string (using hexadecimal values) because numeric arrays cannot be stored in Java constant
tables.  The following code runs on our development machine and calculates 256 values of the
sine function as sixteen bit integers.

        final int nPoints = 256;
        for (int i = 0; i<nPoints; i++) {
            double radians = i * Math.PI / nPoints;
            int tableValue = (int)(Math.sin(radians) * 65535);
            System.out.print("\\u"+Integer.toHexString(tableValue));
        }

This code doesn’t produce quite correct Java: a few of the escape codes at the start and end lack
of the table leading zeros, but it’s easier to correct this by hand than to spend more time on a
program that’s only ever run once.
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The sin function itself does linear interpolation between the two points found in the table.  For
brevity, we’ve not shown the whole table:

        static final String sinValues = "\u0000\u0324\u0648. . .\u0000";

    public static float sin(float radians) {
        float point = (radians / (float)Math.PI) * sinValues.length();
        int lowVal = (int) point;
        int hiVal = lowVal + 1;
        float lowValSin = (float)sinValues.charAt(lowVal) / 65535;
        float hiValSin = (float)sinValues.charAt(hiVal) / 65535;
        float result = ((float)hiVal - point) * lowValSin
            + (point - (float)lowVal) * hiValSin;
        return result;
    }

On a fast machine with a maths co-processor this sin function runs orders of magnitude more
slowly than the native Math.sin() function!  Nevertheless this program provides an accuracy
of better than 1 in 20,000, and illustrates the lookup table technique. Lookup tables are widely
used in environments that don’t support mathematics libraries and in situations where you
prefer to use integer rather than floating point arithmetic, such as graphics compression and
decompression on low-power processors.

v v v

Known Uses
Most embedded systems   from digital watches and washing machine controllers to mobile
telephones and weapons systems   keep their code and some of their data in read-only
memory, such as PROMs or EPROMs.  Only run-time data is stored in writable main memory.
Palmtops and Smartphones usually keep their operating system code in ROM, along with
applications supplied with the phone. In contrast, third party applications live in secondary
storage (battery backed-up RAM) and must be loaded into main memory to execute. Similarly,
many 1980’s home computers, such as the BBC Micro, had complex ROM architectures
[Smith 1985].

Even systems that load almost all their code from secondary storage still need some ‘bootstrap’
initialisation code in ROM to load the first set of instructions from disk when the system starts
up.  PCs extend this bootstrap to be ROM-based Basic Input Output System (BIOS), which
provides generic access to hardware, making it easy to support many different kinds of
hardware with one (DOS or Windows) operating system [Chappel 1994].

See Also
Data in read-only storage can be changed using COPY-ON-WRITE and HOOKS.  COPY-ON-WRITE

and HOOKS also allow some kinds of infrequently changing (but not constant) data to be moved
to read only storage.

Anything in read-only storage is suitable for SHARING between various programs and different
components or for moving to SECONDARY STORAGE.

PAGING systems often distinguish between read-only pages and writable pages, and ignore or
prevent attempts to write to read-only pages.  Several processes can safely share a read-only
page, and the paging system can discard it without the cost of writing it back to disk.
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Hooks
Also known as: Vector table, Jump table, Patch table, Interrupt table.

How can you change information read-only storage?

• You are using read-only memory

• It is difficult or impossible to change read-only memory once created.

• Code or data in read-only memory needs to be maintained and upgraded.

• You need to make additions and relatively small changes to the information stored in
read-only memory.

The main disadvantage of read-only storage is that it is read-only.  The contents of read-only
memory are set at manufacturing time, or possibly upgrade, time; whereupon they are fixed for
eternity.  Unfortunately, there are always bugs that need to be fixed, or functionality to be
upgraded.  For example, the released version of the Word-O-Matic code in the Strap-It-On’s
ROM is rather buggy, and fixes for these bugs need to be included into existing systems.  In
addition, Strap-It-On’s marketing department has decreed that it needs an additional predictive
input feature, to automatically complete users’ input and so reduce the number of input
keystrokes [Darragh, Witten, and James 1990].

If the information is stored in partly writable storage, such as EPROMs, your could issue a
completely new ROM image and somehow persuade all the customers to invest the time and
risk of upgrading it.  Upgrading ROMs is painful for your customers, and often commercially
impractical if you don’t have control over the whole system. Moreover, a released ROM is
unlikely to be so badly flawed as to demand a complete re-release.  Often the amount of
information that needs to be changed is small, even for significant changes to the system as a
whole.

You could ignore the existing read-only memory, and store a new copy of the information in
writable main memory.  Even if there is enough writable memory in the system to hold a full
copy of the contents of the read-only memory, you generally cannot afford to dedicate large
amounts of main memory to storing copies of the ROM.

Therefore:  Access read-only information through hooks in writable storage and change the hooks to
give the illusion of changing the information..

The key to making read-only storage extensible is to link your system together through
writeable memory, rather than read-only memory.  When designing a system that uses read-only
storage, do not access that storage directly. Allocate a ‘hook’ in writable memory for each entry
point (to a function, component, data structure, or resource) that is stored in read-only memory,
and initialise each hook to refer to its corresponding entry point.  Ensure that every access to the
entry point is via the writable hook   all accesses, whether from read-only memory or writable
memory should use the hook.

To update the read-only memory you copy just that part of the memory you need to modify, and
then make the required changes to the copy. Then, you can store the modified copy in writable
store, and set the hooks to point to the modified portion.  The modified portion can call other
parts of the program, if necessary again by indirection through the hooks.
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Figure 5:  Code Hooks

For example, the Strap-It-On was carefully designed so that every major function is called
indirectly through a table of hooks that are stored in RAM and initialised when the system is
booted.  Bug fixes, extensions, and third party code can be loaded into the system’s main
memory and the hooks changed to point to them.  When an application uses a system function,
the hooks ensures it finds the correct piece of code   either the original code in ROM, or the
new code in RAM.

Consequences
Hooks let you extend read-only storage, and by making read-only storage easier to use, can
reduce the program’s writable memory requirements.

Providing good hooks increases the quality of the program’s design, making it easier to
maintain and extend in future.  A ROM-based operating system that provides good hooks can
enormously reduce the programmer effort required to implement any specific functionality.

However: Hooks require programmer discipline to design into programs and then to ensure they are
used. They also increases the testing cost of the program, because the hooks have to be tested to
see if they are called at the right times.

Indirect access via hooks is slower than direct access, reducing time performance; and the hook
vectors take up valuable writable storage, slightly increasing memory requirements. Hook
vectors are great places to attack system integrity, as any virus writer will tell you, so using
hooks can make the system less reliable.

v v v

Implementation
Consider the following issues when implementing the Hooks pattern:

1. Calling Writable Memory from Read-Only Memory. You can’t predict the addresses or
entry points of code and data stored in main memory   indeed, because the memory is writable
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memory addresses can change between versions of programs (or even as a program is running).
This makes it difficult for code in ROM to call code or rely on data that is stored in writable
memory.

You can address this by using additional hooks that are stored at known addresses in main
memory   hooks that point to code and data in main memory, rather than into read-only
memory.  Code in ROM can follow these hooks to find the addresses of the main memory
components that it needs to use.

2. Extending Objects in Read-Only Memory.

Object-oriented environments associate operations with the objects they operate upon – called
‘dynamic dispatch’, ‘message sending’ or ‘ad-hoc polymorphism’.  You can use this to
implement rather more flexible hooks.  For example, both EPOC and Windows CE support
C++ derived classes stored in RAM that inherit from base classes stored in ROM.  When the
system calls a C++ virtual function, the code executed may be ROM or in RAM depending on
the class of the object that the function belongs to.  The compiler and runtime system ensures
that the C++ virtual function tables (vtbls) have the correct entry for each function, so the
vtbls behave like tables of hooks [Ellis and Stroustrup 1990, ].  ROM programmers can use
many object-oriented design patterns (such as FACTORY METHOD and ABSTRACT FACTORY) to
implement extensible code [Gamma et al 1995] because the inheritance mechanism does not
really distinguish because ROM and RAM classes.

This works equally well in a Java implementation.  Java’s dynamic binding permits ROM-based
code to call methods that may be in ROM or RAM according to the object’s class.

3. Extending Data in Read-Only Memory.

Replacing ROM-based data is simplest when the data exists as files in a ROM filing system.  In
this case, it is sufficient to ensure that application code looks for files in other file systems
before the ROM one.  EPOC, for example, scans for resource files in the same directory on
each drive in turn, taking the drive letters in alphabetic order. Drive Z, the ROM drive, is
therefore scanned last.

You can also use accessor functions to use data structures stored in read-only memory.
Provided these functions are called through hooks, you can modify the data the rest of the
system retrieves from read-only memory by modifying these accessor functions.

If you access read-only memory directly, then you need programmer discipline to write code
that can use both ROM and RAM simultaneously.  When reading data, you should generally
search the RAM first, then the ROM; when writing data, you can only write into the RAM.
This ensures that if you replace the ROM data by writing to RAM, the updated version in RAM
will be found before the original in ROM.

Example
The Strap-It-On’s operating system is mostly stored in ROM, and accessed via a table of hooks.
The operating system can be updated by changing the hooks.  This example describes C code
implementing the creation of the hook table and intercepting the operating system function
memalloc, that allocates memory.

The basic data type in the Strap-It-On operating system is called a sysobj —   it may be a
pointer to a block of memory, a single four-byte integer, two two-byte short integers and so on.
Every system call takes and returns a single sysobj, so the hook table is essentially a table of
pointers to functions taking and returning sysobjs.
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typedef void* sysobj;
const int SIO_HOOK_TABLE_SIZE = 100;
typedef sysobj (*sio_hook_function) (sysobj) ;

sio_hook_function sio_hook_table[SIO_HOOK_TABLE_SIZE];

As the system begins running, it stores a pointer to the function that implements memalloc in
the appropriate place in the hook table.

extern sysobj sio_memalloc( sysobj );
const int SIO_MEMALLOC = 0;
sio_hook_table[SIO_MEMALLOC] = sio_memalloc;

Strap-It-On applications make system calls, such as the function memalloc, by calling
‘trampoline functions’ that indirect through the correct entry in the hook table.

void *memalloc(size_t bytesToAllocate) {
    return (void*)sio_hook_table[SIO_MEMALLOC]((sysobj)bytesToAllocate);
}

1. Changing a function using a hook

To change the behaviour of the system, say to implement a memory counter, we first allocate a
variable to remember the address (in read-only memory) of the original implementation of the
memalloc call. We need to preserve the original implementation because our memory counter
will just count the number of bytes requested, but then needs to call the original function to
actually allocate the memory.

static sio_hook_function original_memalloc  = 0;

static size_t mem_counter = 0;

We can then write a replacement function that counts the memory requested and calls the
original version:

sysobj mem_counter_memalloc(sysobj size) {
    mem_counter += (size_t)size;
    return original_memalloc( size );
}

Finally, we can install the memory counter by copying the address of the existing system
memalloc from the hook table into our variable, and install our new routine into the hook table.

original_memalloc = sio_hook_table[SIO_MEMALLOC];
sio_hook_table[SIO_MEMALLOC] = mem_counter_memalloc;

Now, any calls to memalloc (in client code and in the operating system, as ROM also uses the
hook table) will first be processed by the memory counter code.

v v v

Known Uses
The Mac, BBC Micro, and IBM PC ROMs are all reached through hook vectors in RAM, and
can be updated by changing the hooks.  Emacs makes great use of hooks to extend its
executable-only code   this way, many users can share a copy of the Emacs binary, but each
one have their own, customised environment [Stallman 1984].  NewtonScript allows objects to
inherit from read-only objects, using both hooks and copy-on-write so that they can be modified
[Smith 1999].

The EPOC ‘Time World’ application has a large ROM-based database of world cities and
associated time zones, dialling codes and locations.  It also permits the user to add to the list; it
stores new cities in a RAM database similar to the pre-defined ROM one, and searches both
whenever the user looks for a city.
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EPOC takes an alternative approach to updating its ROM.  Patches to ROMs are supplied as
device drivers that modify the virtual memory map of the system, to map one or more new
pages of code in place of the existing ROM memory.  This is awkward to manage as the new
code must occupy exactly the same space as the code, and exactly the same entry points at
exactly the same memory addresses.

See Also
COPY-ON-WRITE is a complementary technique for changing information in READ-ONLY STORAGE,
and COPY-ON-WRITE and HOOKS can often be used together.

Using HOOKS in conjunction with READ-ONLY storage is a special instance of the general use of
hooks to extend systems one cannot change directly.  Many of the Object-Oriented Design
Patterns [Gamma et al 1995] patterns are also concerned with making systems extensible
without direct changes.

HOOKS form an important part of the hot-spot approach to systems design [Pree 1995].
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 Major Technique: Secondary Storage
Version   11/06/00 20:19 - 9

What can you do when you have run out of primary storage?

• Your memory requirements are larger than the available primary storage.

• You cannot reduce the system's memory requirements sufficiently.

• You can attach secondary storage to the device executing the system.

Sometimes your system’s primary memory is just not big enough to fulfil your program’s
memory requirements.

For example, the Word-O-Matic™  word-processor for the Strap-It-On™  needs to be able to
let users edit large amounts of text.  Word-O-Matic also supports formatting text for display or
printing, not to mention spelling checks, grammar checks, voice output, mail merging and the
special StoryDone feature to write the endings for short stories.  Unfortunately, the Strap-It-On
has only 2Mb of RAM.  How can the programmers even consider implementing Word-O-Matic
when its code alone will occupy most of the memory space?

The are a number of other techniques in this book which can reduce a program’s memory
requirements. COMPRESSION can store the information in a smaller amount of memory.  Testing
applications under a memory limit will ensure programs fit well into a small memory space.
You can reduce the system functionality by deleting features or reducing their quality.  In many
cases, however, these techniques will not reduce the program’s memory requirements
sufficiently: data that has to be accessed randomly is difficult to compress; programs have to
provide the features and quality expected by the marketplace.

Yet for most applications there is usually some hope.  Even in small systems, the amount of
memory a program requires to make progress at any given time is usually a small fraction of
the total amount of memory used.  So the problem is not where to store the code and data
needed by the program at any given moment; rather, the problem is where to store the rest of
the code and data that may, or may not, be needed by the program in the future.

Therefore: Use secondary storage as extra memory at runtime.

Most systems have some form of reasonably fast secondary storage.  Secondary storage is
distinct from RAM, since the processor can’t write to each individual memory addresses
directly; but it’s easy for applications to access secondary storage without user intervention.
Most forms of secondary storage support file systems such that the data lives in files with text
names and directory structures.  Typically each file also supports random access to its data
(“get me the byte at offset 301 from the start of the file”).

If you can divide up your program and data into suitable pieces you can load into main
memory only those pieces of code and data that you need at any given time, keeping the rest of
the program on secondary storage. When the pieces of the program currently in main memory
are no longer required you can somehow replace them with more relevant pieces from the
secondary store.

There are many different kinds of secondary storage that can be modified and can be accessed
randomly: Floppy Disks, Hard Disks, Flash filing systems, Bubble Memory cards, CD-ROM
drives, writable CD ROM file systems, and gargantuan file servers accessed over a network.
Palm Pilot systems use persistent ‘Memory Records’ stored in secondary RAM.  Other forms
of secondary storage provide only sequential or read-only access:  tape, CD-ROM and web
pages accessed over the Internet.
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For example the Strap-It-On comes with a CyberStrap, which includes a 32Mb bubble memory
store built into its strap along with interfaces for wrist-mounted disk drives.   So the Word-O-
Matic developers can rely on plenty of ‘disk’ to store data.  Thus Word-O-Matic consists of
several separate executables for APPLICATION SWITCHING; it stores each unused document in a
DATA FILE; dictionaries, grammar rules and skeleton story endings exist as RESOURCE FILES;
optional features are generally shipped as PACKAGES; and the most complex operations use
object PAGING to make it seem that the RAM available is much larger than in reality.

Consequences
Being able to use SECONDARY STORAGE can be like getting a lot of extra memory for free —  it
greatly reduces your program’s primary memory requirements.

However: the secondary storage must be managed, and information transferred between
primary and secondary storage.  This management has a time performance cost, and may also
cost programmer effort and programmer discipline, impose local restrictions to support
global mechanisms, require hardware or operating system support, and reduce the program’s
usability.  Most forms of secondary storage require additional devices, increasing the system’s
power consumption.

v v v

Implementation
There are a few key issues you must address to use secondary storage effectively:

• What is divided up: code, data, configuration information or some combination?
• Who does the division: the programmer, the system or the user?
• Who invokes the loading and unloading: the programmer, the system or the user?
• When does loading or unloading happen?

Generally, the more the program is subdivided and the finer the subdivision, the less the
program depends on main memory, and the more use the program makes of secondary storage.
Coarser divisions, perhaps addressing only code or only data, may require more main memory
but place less pressure on the secondary storage resources.

Making programmers subdivide the program manually requires more effort than somehow
allowing the system, or the user, to subdivide the program; and a finer subdivision will require
more effort than a coarser one.  As a result very fine subdivisions are generally only possible
when the system provides them automatically; but creating an automatic system requires
significant effort.  Making the user divide up the program or data imposes little cost for
programmers, but reduces the usability of the system.

There are similar trade-offs in deciding who controls the loading and unloading of the divisions.
If the system does it automatically this saves work for everyone except the system-builders;
otherwise the costs fall on the user and programmer.  Sequential loading and unloading is the
simplest to implement (and often the worst for the user).  More complex schemes that load and
unload code or data on demand can be much more seamless to the user, and can even make the
reliance on secondary storage transparent to both users and programmers.

v v v

Specialised Patterns
The rest of this chapter contains five specialised patterns describing different ways to use
secondary storage.   Figure 1 shows the patterns and the relationships between them: arrows
show close relationships; springs indicate a tension between the patterns.
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Figure 1: Secondary Storage Patterns

The patterns also form a sequence starting with simple patterns which can be implemented
locally, relying only upon programmer discipline for correct implementation, and finishing with
more complex patterns which require hardware or operating system support but require much
less, if any, programmer discipline.  Each pattern occupies a different place in the design
space defined by the questions above, as follows:

APPLICATION SWITCHING requires the programmer to divide up the program into independent
executables, only one of which runs at a time.  The order in which the executables run
can be determined by the executables themselves, by an external script, or by the user.

DATA FILES uses secondary storage as a location for inactive program data.  These files may or
may not be visible to the user.

RESOURCE FILES store static read-only data.  When the program needs a resource (such as a font,
an error message, or a window description), it loads the resource from file into
temporary memory; afterwards it releases this memory.

PACKAGES store chunks of the program code.  The programmer divides the code into packages,
which are loaded and unloaded as required at runtime.

PAGING arbitrarily breaks the program down into very fine units (pages) which are shuffled
automatically between primary and secondary storage.  Paging can handle code and
data, support read-only and shared information between different programs, and is
transparent to most programmers and users.

All of these patterns in some sense trade facilities provided in the environment for work done
by the programmer.  The more complex the environment (compilation tools and runtime
system), the less memory management work for the programmer; however a complex run-time
environment takes both effort to develop, and has its own memory requirements at run-time.
Figure 3 shows where each pattern fits in this scheme.
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Figure 3: Implementation Effort vs. Environmental Complexity

See Also
READ-ONLY pieces of program or data can be deleted from memory without having to be saved
back to secondary storage.

You can use COMPRESSION to reduce the amount of space taken on secondary storage.

Secondary Storage management is one of the primary functions of modern operating systems.
More background information and detail on techniques for using Secondary Storage can be
found in many operating systems textbooks [Tannenbaum 1992, Leffler, McKusik, Karels and
Quarterman 1989, Goodheart and Cox 1994].

______________________________
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Application Switching
How can you reduce the memory requirements of a system that provides many different functions?

Also known as: Phases, Program Chaining, Command Scripts.

• Systems are too big for all the code and data to fit into main memory

• Users often need to do only one task at a time

• A single task requires only its own code and data to execute; other code and data can
live on secondary storage.

• It’s easier to program only one set of related tasks – one application – at a time.

Some systems are big – too big for all of the executable code and data to fit into main memory
at the same time.

For example a Strap-It-On user may do word-processing, run a spreadsheet, read Web pages,
do accounts, manage a database, play a game, or use the ‘StrapMan’ remote control facilities
to manage the daily strategy of a large telecommunications network.    How can the
programmers make all this functionality work in the 2 Mb of RAM they have available –
particularly as each of the StrapMan’s five different functions requires 1Mb of code and 0.5
Mb of temporary RAM data?

Most systems only need a small subset of their functionality – enough to support one user task
– at any given time.  Much of the code and data in most systems is unused much of the time,
but all the while it occupies valuable main memory space.

The more complex the system and the bigger the development team, the more difficult
development becomes.  Software developers have always preferred to split their systems
architecture into separate components, and to reduce the interdependencies between these
components. Components certainly make system development manageable, but they do not
reduce main memory requirements.

Therefore: Split your system into independent executables, and run only one at a time.

Most operating systems support independent program components in the form of executable
files on secondary storage. A running executable is called a process and its code and data
occupies main memory. When a process terminates, all the main memory it uses is returned to
the system.

Design the system so that behaviour the user will use together or in quick succession will be in
the same executable.  Provide facilities to start another executable when required, terminating
the current one. The new process can reuse all the memory released by the terminated process.

In many operating systems this is the only approach supported; only one process may execute
at a time.  In MS-DOS the executable must provide functionality to terminate itself before
another executable can run; in MacOS and PalmOs there is control functionality shared by all
applications to support choosing another application and switching to it.  [Chappell 1994,
Apple 1985, Palm 2000].  In multi-tasking operating systems this pattern is still frequently
used to reduce main memory requirements.

For example, no Strap-It-On user would want to do more than one of those tasks at any one
time; it’s just not physically possible given the small size of the screen.  So each goes in a
separate executable (word-processor, spreadsheet, web browser, accounting, database, Doom),
and the Strap-It-On provides a control dialog that allows the user to terminate the current
application and start another.  Each application saves its state on exit and restores it on restart,
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so that – apart from the speed of loading – the user has no way of telling the application has
terminated and restarted.  The StrapMan application, however, wouldn’t fit in RAM as a single
executable.  So the StrapMan’s authors split it into six different executables (one for the main
program and one for each function), and made the main one ‘chain’ to each other executable as
required.

Consequences
The memory requirements for each process are less than the memory requirements for the
entire system.  The operating system reclaims the memory when the process terminates, so this
reduces programmer effort managing memory and reduces the effects of ‘memory leaks’.

Different executables may be in different implementation languages, and be an interpreted or
compiled as required.  Some executables may also be existing ‘legacy’ applications, or utilities
provided by the operating system.  So APPLICATION SWITCHING may significantly reduce the
programmer effort to produce the system, encouraging reuse and making maintenance easier.
Script-based approaches can be very flexible, as scripts are typically very easy to modify.
Also applications tend to be geared to stopping and starting regularly, so errors that terminate
applications may not be so problematic to the user, increasing the system’s robustness.

In single-process environments, such as PalmOs, each process occupies the same memory
space, so the amount of memory required is easy to predict, which improves reliability, makes
testing easier and removes the effects of the global memory use on each local application.
You only need to start the first process to get the system running, reducing start-up times.  It’s
also easy to know what’s happening in a single-process environment, simplifying real-time
programming.

However: Dividing a large program into a good set of processes can be difficult, so a multi-process
application can require significant programmer effort to design, and local complexity in the
implementation.

If you have many executables, the cost of starting each and of transferring data can dominate
the system’s run time performance; this is also a problem if the control flow between different
processes is complex —  if processes are started and terminated frequently.

In single-process environments the user can use only the functionality in the current executable,
so chaining tends to reduce the system’s usability.  If the user has to manage the processes
explicitly, that also reduces the program’s usability.

This pattern does not support background activities, such as TCP/IP protocols, interfacing to a
mobile phone, or background downloading of email.  Such activities must continue even when
the user switches tasks.  The code for background tasks must either be omitted (reducing
usability), live in a separate process (increasing programmer effort), or be implemented using
interrupt routing (requiring large amounts of specialised programmer effort).

v v v

Implementation
To implement Application Switching you have to divide up the system into separate
components (see the SMALL ARCHITECTURE pattern).  Communication between running processes
can be difficult, so in general the split must satisfy these rules:

• The control flow between processes is simple

• There is little transient data passed between the processes.

• The division makes some kind of sense to the user.



Application Switching UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 7

Figure 3 shows the two main alternatives that you can use to implement process switching:
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Figure 5: Two different approaches to implementing Phases

1. Program Chaining.

One process can pass control explicitly to the following process.  This is called ‘program
chaining’, after the ‘CHAIN’ command in some versions of the BASIC programming language
[Digital 1975; Steiner 1984].  Program Chaining requires that each executable to know which
executable to go to next.  This can be programmed explicitly by each application, or as part of
an application framework library.  Given such an application framework, each executable can
use the framework to determine which application to switch to next, and to switch to that
application, without requiring much programmer effort. The MacOs (task switcher) and
PalmOs application frameworks do this [Apple 1984, Palm 2000].

2. Master Program.

Alternatively, a script or top-level command program can invoke each application in turn. A
master program, by contrast, encourages reuse because each executable doesn't need to know
much about its context and can be used independently.  The UNIX environment pioneered the
idea of small interoperable tools designed to work together in this way [Kernighan and Pike
1984]. Even with a master program, the terminating program can help determine which
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application to execute next by passing information back to the master program using exit
codes, or by producing output or temporary files that are read by the master program.

3. Communicating between Processes.

How can separate components communicate when only one process is active at a time?  You
can’t use main memory, because that is erased when each process terminates.  Instead you need
to use one or more of the following mechanisms:

• Command line parameters and environment variables passed into the new process.

• Secondary storage files, records or databases written by one process and read by
another.

• Environment-specific mechanisms.  For example, many varieties of Basic complimented
the CHAIN command with a COMMON keyword that specifies data preserved when a new
process overwrites the current one [Steiner 1984].

4. Managing Data.

How do you make it seem to the user that an application never terminates, even when it is split
up in separate processes?  Many environments only support a small number of processes,
maybe just one, but users don’t want to have to recreate all their state each time they start up a
new application.  They want the illusion that the application is always running in the
background.

The solution is for the application to save an application’s state to SECONDARY STORAGE on exit,
and to restore this state when the application’s restarted. Many OO libraries and environments
support ways of ‘streaming’ all the important objects – data and state – as a single operation.
The approach requires a binary ‘file stream’, which defines stream functions to read and write
primitive types (e.g. int, char, float, string).  Each class representing the application’s state then
defines its own streaming functions.

When you are streaming out object-oriented applications, you need to ensure each object is
streamed only once, no matter how many references there may be to it.   A good way to deal
with this is to have the ‘file stream’ maintain a table of object identifiers.  Each time the stream
receives a request to stream out an object it searches this table, and if it finds the object already
there, it just saves a reference to the file location of the original instead of saving it again.

The Java libraries support persistence through the Serialization framework  [Chan et al 1998].
Any persistent class implements the Serializable interface; it needs no other code – the
runtime environment can serialize all its data members, following object references as required
(and writing each object only once, as above).  The classes ObjectOutputStream and
ObjectInputStream provide methods to read and write a structure of objects: writeObject
and readObject respectively.  By convention the files created usually have the extension
‘.ser’; some applications ship initial ‘.ser’ files with the Java code in the JAR archive.

Examples
Here’s a very trivial example from an MS Windows 3.1 system.  We cannot use the disk-
checking program, scandisk, while MS Windows is running, so we chain it first, then run
Windows:

@REM AUTOEXEC.BAT Command file to start MS Windows 3.1 from DOS
@REM [Commands to set paths and load device drivers omitted]
C:\WINDOWS\COMMAND\scandisk /autofix /nosummary
win

The following Java routine chains to a different process, terminating the current process:
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    void ChainToCommand(String theCommand) throws IOException {
        Runtime.getRuntime().exec(theCommand);
        Runtime.getRuntime().exit( 0 );
    }

Note that if this routine is used to execute another Java application, it will create a new Java
virtual machine before terminating the current one, and the two VMs will coexist temporarily,
requiring significant amounts of memory.

The Unix exec family of functions is more suitable for single process chaining in low memory;
each starts a new process in the space of the existing one [Kernighan and Pike 1984]. The
following C++ function uses Microsoft C++’s _execl variant [Microsoft 1997].  It also uses
the Windows environment variable ‘COMSPEC’ to locate a command interpreter, since only the
command interpreter knows where to locate executables and how to parse the command line
correctly.

void ChainToCommand( string command )
{

const char *args[4];
args[0] = getenv( "comspec" );
args[1] = "/c";
args[2] = command.c_str();
args[3] = 0;
_execv( args[0], args );

}

The function never returns.  Note that although all the RAM memory is discarded, execl
doesn’t close file handles, which remain open in the chained process.  See your C++ or library
documentation for ‘execl’ and the related functions.

The following is some EPOC C++ code implementing streaming for a simple class, to save
data to files while the application is switched.  The class, TSerialPortConfiguration,
represents configuration settings for a printer port.  Most of its data members are either C++
enum’s with a small range of values, or one-byte integers (char in C++, TInt8 in EPOC
C++); TOutputHandshake is a separate class:

class TSerialPortConfiguration {
   // Various function declarations omitted…

TBps iDataRate;
TDataBits iDataBits;
TStopBits iStopBits;
TParity iParity;
TOutputHandshake iHandshake;
};

The functions InternalizeL and ExternalizeL read and write the object from a stream.
Although the values iDataRate are represented internally as 4-byte integers and enums, we
know we’ll not loose information by storing them as PACKED DATA, in a single byte.  The class
TOutputHandshake provides its own streaming functions, so we use them:

EXPORT_C void TSerialPortConfiguration::InternalizeL(RReadStream& aStream)
{
iDataRate = (TBps) aStream.ReadInt8L();
iDataBits = (TDataBits) aStream.ReadInt8L();
iStopBits = (TStopBits) aStream.ReadInt8L();
iParity = (TParity) aStream.ReadInt8L();
iHandshake.InternalizeL(aStream);
}

EXPORT_C void TSerialPortConfiguration::ExternalizeL(RWriteStream& aStream) const
{
aStream.WriteInt8L(iDataRate);
aStream.WriteInt8L(iDataBits);
aStream.WriteInt8L(iStopBits);
aStream.WriteInt8L(iParity);
iHandshake.ExternalizeL(aStream);
}
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v v v

Known Uses
The PalmOs and early versions of the MacOs environments both support only a single user
process at any one time; both provide and framework functions to simulate multi-tasking for
the user.  MacOs uses persistence while PalmOs uses secondary storage ‘memory records’ to
save application data [Apple 1985, Palm 2000].

The UNIX environment encourages programmers to use processes by supporting scripts and
making them executable in the same way as binary executables, with any suitable scripting
engine [Kernighan and Pike 1984].  In Windows and the DOS environments, the only fully-
supported script formats are the fairly simple BAT and CMD formats, although it’s trivial to
create a simple Windows BAT file to invoke more powerful scripting language such as Tcl
[Ousterhout 1994] and Perl [Wall 1996].

The Unix Make utility manages application switching (and the DATA FILES required) to compile
a program, generally running any preprocessors and the appropriate compiler process for each
input file in turn, then running one or more linker processes to produce a complete executable
[Kernighan and Pike 1984].

See Also
PACKAGES provide similar functionality within a single process – by delaying code loading until
it’s required.  However whereas in PROCESS SWITCHING the operating system will discard the
memory, code and other resources owned by a task when the task completes, a PACKAGE must
explicitly release these resources.

PAGING provides much more flexible handling of both code and data.

The executables can be stored on SECONDARY STORAGE, using COMPRESSION.

The MEMORY DISCARD pattern has a similar dynamic to this pattern but on a much smaller
scale. Where APPLICATION SWITCHING recovers all the memory occupied by an process only
when it terminates, MEMORY DISCARD allows an application to recover the memory occupied by
a group of objects in the middle of its execution.

______________________________
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Data File Pattern
What can you do when your data doesn’t fit into main memory?

Also known as: Batch Processing, Filter, Temporary File

• Systems are too big for all the code and data to fit into RAM together

• The code by itself fits into RAM (or can be fitted using other patterns)

• The data doesn’t fit into RAM

• Access to the data is sequential.

Sometimes programs themselves are quite small, but need to process a large amount of data —
the memory requirements mean that the program will fit into main memory, but the data
requires too much memory.

For example, the input and output data for the Word-O-Matic Text Formatter can exceed the
capacity of the Strap-It-On’s main memory when formatting a large book.  How should the
Word-O-Matic designers implement the program to produce the output PostScript data, let
alone to produce all the index files and update all the cross references, when it’s physically
impossible to get them all into RAM memory?

Dividing the program up into smaller phases (as in APPLICATION SWITCHING) can reduce the
memory required by the program itself, but this doesn’t help reduce the memory requirements
for the input and output.  Similarly, COMPRESSION techniques may reduce the amount of
secondary storage required to hold the data, but don’t reduce the amount of main memory need
to process it.

Yet most systems don’t need you to keep all data in RAM.  Modern operating systems make it
simple to read and write from files on Secondary Storage.  And the majority of processing
tasks do not require simultaneous access to all the data.

Therefore: Process the data a little at a time and keep the rest on secondary storage.

Use sequential or random file access to read each item to process; write the processed data
sequentially back to one or more files.  You can also write temporary items to secondary
storage until you’re ready to use them. If you are careful, the amount of main memory needed
for processing each portion will be much less than the total memory that would be required to
process all the data in main memory.   You need to be able to store both input and output as
files in SECONDARY STORAGE, so the input and output data must be partitioned cleanly.

For example Word-O-Matic stores its chapters as separate text files. The Word-O-Matic Text
Formatter (nicknamed the ‘Wombat’) makes several passes over these files, see Figure XXX.
The first pass scans all the chapter files in turn, locating the destinations of cross references
and index entries in the file data, and writes all the information it needs to create each cross-
reference to a temporary ‘cross reference’ file.  Wombat’s second pass then scans the cross-
reference file to create an in-memory index to this file, then reads each chapter file, creating a
transient version with the cross references and indexes included.  It reads the cross-reference
data by random access to the index file using the in-memory index.  Since the page numbering
changes as a result of the updates, Wombat also keeps an in-memory table showing how each
reference destination has moved during this update. Finally Wombat’s third pass reads each
transient chapter file a bit at a time, and writes out the PostScript printout sequentially, making
the corrections to the page numbers in the index and references using its in-memory table as it
does.  Using these techniques Wombat can format an entire book using as little as 50Kb of
RAM memory.
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Figure 6: Wombat’s Data Files and Phases

Consequences
The memory requirements for processing data piecemeal are reduced, since most of the data
lives on secondary storage. The system’s main memory requirements are also much more
predictable, because you can allocate a fixed memory to support the processing, rather than a
variable amount of memory to store a variable amount of data.

You can examine the input and output of functions in an application using utilities to look at
the secondary storage files, which makes testing easier.  Data Files also make it easy to split an
application into different independent components linked only by their data files, reducing the
global impact of local changes, and making maintenance easier.  Indeed Data Files also make
it much easier to implement phases, allowing APPLICATION SWITCHING; for example, Wombat’s
phase 1 is in a different executable from phases 2 and 3.

However:  Programmer effort is required to design the program so that the data can be processed
independently.  Processing data incrementally adds local complexity to the implementation,
which you could have avoided by processing the data globally in one piece. If you need to keep
extra context information to process the data, then managing this information can add global
complexity to the program.

Data chaining can provide slower run-time performance than processing all the input in one
piece, since reading and writing many small data items is typically less efficient than reading or
writing one large item. Repeated access to secondary storage devices can increase the system’s
power consumption, and can even reduce the lifetime of some secondary storage media, such
as flash RAM and floppy disks.  The limitations of data files – such as imposing ordering rules
on the input, or needing the user or client software to manage files – can reduce the system’s
usability.

v v v

Implementation
The Wombat example above illustrated the four main kinds of operation on data files:

1. Simple Sequential Input (reading each chapter in turn)



Data File Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 13

2. Simple Sequential Output (writing the final output file)

3. Random Access (reading and writing the cross-reference file)

4. Sequential output to several files (writing the temporary chapter files)

Here are some issues to consider when using data files:

1. Incremental Processing. One simple and common way to manipulate data files is to read an
entire file sequentially from input, and/or to write a second file sequentially to the output (see
figure XX).  Incremental processing requires extra programmer effort to implement, because
the program must be tailored specially to process its input file incrementally.  Because the
program processes one large file in small increments, the program is typically responsible for
selecting the increments to process (although this can be left to the user by requiring them to
indicate increment boundaries in the data file, or provided a collection of smaller data files).

Input data

Process

Process

Process

Output data

Figure 7: Incremental Processing

Because the whole input file is processed in a single operating systems process, incremental
data chaining makes it easier to maintain global contextual information between each
processing stage, and easier to produce the final output —  the final output is just written
incrementally from the program.  Unfortunately, precisely because it works in one single long-
running process, it can be more difficult to keep the memory requirements down to a minimum.

2. Subfile Processing.  Rather than processing a single file sequentially, you can divide data up
into a number of smaller subfiles. Write a program which processes one subfile, producing a
separate output file. Run this program multiple times (typically sequentially) to process each
subfile, and then combine the subfiles to produce the required output (see Figure YYY).

Input data

Output data

Process

Process

Process

Input subfiles Output subfiles

Figure 8: Subfile Processing

Subfile processing has several advantages, provided it’s easy to divide up the data. Subfile
processing tends to require less memory, since only a subset of the data is processed at a time;
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and it is more robust to corruption and errors in the data files, since each such problem only
affects one file. Unfortunately, splitting the files requires effort either on the part of the
program or on the part of the user: co-ordinating the processing and combining the subfiles
requires programmer effort.  See the pattern APPLICATION SWITCHING for a discussion of
techniques for communication between such processes.

Many compilers use subfile processing: they compile each code file separately, and only
combine the resulting temporary object files in a separate link phase. Because of its enormous
potential for reducing memory use, subfile processing was ubiquitous in old-time batch tape
processing [Knuth 1998].

3. Random Access. Rather than reading and writing files sequentially (whether incrementally
or using subfiles) you can access a single file randomly, selecting information and reading and
writing it in any order.  Random access generally requires more programmer effort than
incremental or subfile processing, but is much more flexible: you don’t have to determine the
order items can be processed (and possibly divide them into subfiles) in advance.

To use random access, each process needs to be able to locate individual data items within the
files on secondary storage. Generally, you will need an index, a list of offsets from the start of
the file for each item of data required.  Because the index will be used for most accesses to the
file, it needs to be stored in main memory, or easily accessible from main memory.  Effective
indexing of files is a major science in its own right, but for simple applications there are two
straightforward options:

• The file may contain its own index, perhaps at the start of the file, which is read into
RAM by the process.  RESOURCE FILES often use this approach.

• The application may scan the file on start up, creating its own index.  The Wombat text
processor did this with its cross-reference file.

More complicated systems may use indexes in different files from the data, or even have
indexes to the index files themselves. File processing is covered in texts such as Folk, Zoellick
and Riccardi [1988], Date [1999] and Elmasri and Navathe [2000].

Temporary
File

Process Output
data

Creates

Process

Random   access

Input
data

Figure 9: Random Access

Examples
1. Simple Subfile Processing

File compilation provides a typical example of subfile processing.  The user splits each large
program into a number of files, and the compiler processes each file individually. Then the
linker ‘ld’ combines the various ‘.o’ output files into an executable program, testprog.
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cc main.c
cc datalib.c
cc transput.c
ld –o testprog main.o datalib.o transput.o

2. Incremental Processing

The following Java code reverses the characters in each line in a file.  It reads each line into a
buffer, reverses the characters in the buffer, and then writes the buffer out into a second file.
We call the reverse method with a BufferedReader and BufferedWriter to provide more
efficient access to the standard input and output than direct access to the disk read and write
functions, at a cost of some memory:

    reverse(new BufferedReader(new InputStreamReader(System.in)),
            new BufferedWriter(new OutputStreamWriter(System.out)));

The reverse method does the work, using two buffers, a String and a StringBuffer,
because Strings in Java cannot be modified.

public void reverse(BufferedReader reader, BufferedWriter writer)
   throws IOException {

String line;
StringBuffer lineBuffer;

while ((line = reader.readLine())!=null) {
    lineBuffer = new StringBuffer(line);
    lineBuffer.reverse();
    writer.write(lineBuffer.toString());
    writer.newLine();
}
writer.close();

}

The important point about this example is that it requires only enough memory to hold the
input and output buffers, and a single line of text to reverse, rather than the entire file, and so
can handle files of any length without running out of memory.

3. Processing with Multiple Subfiles

Consider reversing all the bytes in a file rather than just the bytes in each line.  The simple
incremental technique above won’t work, because it relies on the fact that processing one line
does not affect any other lines.  Reversing all the characters in a file involves the whole file, not
just each individual line.

We can reverse a file without needing to store it all in memory by using subfiles on secondary
storage.  We first divide (scatter) the large file into a number of smaller subfiles, where each
subfile is small enough to fit into memory, and then we can reverse each subfile separately.
Finally, we can read (gather) each subfile in reverse order, and assemble a new completely
reversed file.

public void run() throws IOException {
scatter(new BufferedReader(new InputStreamReader(System.in)));
gather(new BufferedWriter(new OutputStreamWriter(System.out)));

}

To scatter the file into subfiles, we read SubfileSize bytes from the input reader into a
buffer, reverse the buffer, and then write it out into a new subfile
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protected void scatter(BufferedReader reader) throws IOException {
int bytesRead;
while ((bytesRead = reader.read(buffer, 0, SubfileSize)) > 0) {
    StringBuffer stringBuffer = new StringBuffer(bytesRead);
    stringBuffer.append(buffer, 0, bytesRead);
    stringBuffer.reverse();
    BufferedWriter writer =

new BufferedWriter(new FileWriter(subfileName(nSubfiles)));
    writer.write(stringBuffer.toString());
    writer.close();
    nSubfiles++;
}

}

We can reuse the buffer each time we reverse a file (an example of FIXED ALLOCATION), but we
have to generate a new name for each subfile. We also need to count the number of subfiles we
have written, so that we can gather then all together again.

protected char buffer[] = new char[SubfileSize];

protected String subfileName(int n) {
return "subxx" + n;

}

protected int nSubfiles = 0;

Finally, we need to gather all the subfiles together.  Since the subfiles are already reversed, we
just need to open each one starting with the last, read its contents, and write them to an output
file.

protected void gather(BufferedWriter writer) throws IOException {
for (nSubfiles--; nSubfiles >= 0; nSubfiles--) {

File subFile = new File(subfileName(nSubfiles));
BufferedReader reader =

new BufferedReader(new FileReader(subFile));
int bytesRead = reader.read(buffer, 0, SubfileSize);
writer.write(buffer, 0, bytesRead);
reader.close();
subFile.delete();

    }
writer.close();

}

v v v

Known Uses
Most programming languages compile using subfile processing. C, C++, FORTRAN and
COBOL programs are all typically compiled one file at a time, and the output object files are
then combined with a single link phase after all the compilation phases.  C and C++ also force
the programmer to manage the ‘shared data’ for the compilation process in the form of header
files [Kernighan and Ritchie 1988].  Java takes the same approach for compiling each separate
class file; instead of a link phase Java class files are typically combined into a ‘JAR’ archive
file using COMPRESSION [Chen et al 1998].

The UNIX environment encourages programmers to use data files by providing many simple
‘filter’ executables: wc, tee, grep, sed, awk, troff, for example [Kernighan and Pike
1984].  Programmers can combine these using ‘pipes’; the operating system arranges that each
filter need only handle a small amount of data at a time.

Most popular applications use data files, and make the names of the current files explicit to the
user.  Microsoft’s MFC framework enshrines this application design in its Document-View
architecture [Prosise 1999], supporting multiple documents, where each document normally
corresponds to a single data file.  EPOC’s AppArc architecture [Symbian 1999] supports only
one document at a time; depending on the look and feel of the particularly environment this file
name may not be visible to the user.
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Some word processors and formatters support subfiles – for example Microsoft Word, TeX,
and FrameMaker. [Microsoft Word 1997, Lamport 1986, Adobe 1997].  The user can create a
master document that refers to a series of subdocuments. These subdocuments are edited
individually, but when the document is printed each subdocument is loaded into memory and
printed in turn. The application need keep only a small amount of global state in memory
across subdocuments.

EPOC supports a kind of sub-file within each file, called a stream; each stream is identified
using an integer ID and accessed using a simple persistence mechanism.  This makes it easy to
create many output subfiles and to access each one separately, and many EPOC applications
use this feature. Components that use large objects generally persist each one in a separate
stream; then they can defer loading each object in until it’s actually required – the template
class TSwizzle provides a MULTIPLE REPRESENTATION to make this invisible to client code
[Symbian 1999]. EPOC’s relational database creates a new stream for every 12 or so database
rows, and for every binary object stored.  This makes it easy for the DBMS server to change
entries in a database – by writing a new stream to replace an existing one and updating the
database’s internal index to all the streams [Thoelke 1999].

Printer drivers (especially those embedded in bitmap-based printers) often use ‘Banding’,
where the driver renders and prints only a part of the page at a time. Banding reduces the size
of the output bitmap it must store, but also reduces the printing speed, as each page must be
rendered several times, once for each band.

See Also
RESOURCE FILES is an alternative for read-only data.  PAGING is much simpler for the
programmer, though much more complex to implement.  DATA FILES make it easier to implement
APPLICATION SWITCHING.  Each subfile can be stored on SECONDARY STORAGE, using
COMPRESSION.

You can use either or both of FIXED ALLOCATION and MEMORY DISCARD to process each item
read from a DATA FILE.

PIPES AND FILTERS [Shaw and Garland 1996] describes a software architecture style based
around filters.

Rather than a simple Data File, you may need a full-scale database [Connolly and Begg 1999;
Date 1999; Elmasri and Navathe 2000]. Wolfgang Keller and Jens Coldewey [1998] provide a
set of patterns to store objects from OO programs into relational databases.

______________________________
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Resource Files Pattern
How can you manage lots of configuration data?

• Much program data is read-only configuration information and is not modified by the
program.

• The configuration data typically changes more frequently than program code.

• Data can be referenced from different phases of the program.

• You only need a few data items at any time.

• File systems support random access, which makes it easy to load a portion of a file
individually.

Sometimes a program’s memory requirements include space for a lot of read-only static data;
typically the program only uses a small amount of this at any one time.  For example Word-O-
Matic needs static data such as window layouts, icon designs, font metrics and spelling
dictionaries.  Much of this information may be requested at any arbitrary time within the
program, but when requested it is typically needed only for a short time.  If the information is
stored in main memory – if, for example, you hard-coded it into your program – it will increase
the program’s overall memory requirements.

Furthermore, you may need to change the configuration information separately from the
program itself. What may seem to be different variants of the program (for different languages,
or with different user interface themes) may use the same code but require different
configuration data.  Within a given configuration, many data items may be required at any time
– window formats or fonts for example, so you cannot use APPLICATION SWITCHING techniques
to bring this data in only for a given portion of the time. In general, however, much of the data
will not be used at any given time.

Therefore:  Keep configuration data on secondary storage, and load and discard each item as
necessary.

Operating systems offer a simple way to store read-only static data: in a file on secondary
storage.  File systems provide random access, so it’s easy to read just a single portion of a file,
ignoring the remainder.  You can load a portion of file into temporary memory, use it for a
while, then discard it; you can always retrieve it again if you need it.  In fact, with only a little
additional complexity, you can make a file into a read-only database, containing data items
each associated with a unique identifier.

Rather than hard-code each item of data specifically in the program code, you can give each
item a unique identifier.  When the program requires the data, it invokes a special routine
passing the identifier; this routine loads the data from a ‘resource file’ and returns it to the
program.  The program may discard the loaded data item when it’s no longer required.  Typical
resources are:

• Strings
• Screen Layouts
• Fonts
• Bitmaps, icons, and cursors.

For example, all of Word-O-Matic’s window layouts, icon designs and text strings are stored
in resource files.  When they are required Word-O-Matic retrieves the data from the resource
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file, and stores in a temporary memory buffer. The memory can be reused when the data is no
longer required.

Consequences
The read-only static data doesn’t clutter primary storage, reducing the program’s memory
requirements. Multiple programs can share the same resource file, reducing the programmer
effort involved.  Some operating systems share the loaded resources between multiple instances
of the same program or library, further decreasing memory requirements. This also makes it
easy to change the data without changing the program (e.g. to support multiple language
strings), increasing the program’s design quality.

However:  this approach requires programmer discipline to place resources into the resource files, and
to load and release the resources correctly.  Loading and unloading resource files reduces the
program’s time performance somewhat.  In particular they can impact its start-up time.
Resource files also need programmer effort to implement, because you need some mechanism
to unload (and reload) the resources. It’s best if the operating system environment provides this
support.

v v v

Implementation
Since resource files are accessed randomly, applications need an index to locate data items (see
DATA FILES).  Most implementations of resource files hold this index in the resource file itself;
typically at the start of the file.  However this means that the resource file cannot simply be
human-readable text, but must be compiled.  Resource Compilers also typically convert the
resource data into binary formats that can easily used by managed by application code,
reducing the memory occupied and improving application performance.

In practice you usually need a logical separation between different resources in a system:  the
resources for one component are distinct from those for another, and the responsibility of
separate teams.  Thus most resource file frameworks support more than one resource file at a
time.

Here are some things to consider when implementing resource files:

1. Making it easy for the programmer.

The task of loading and interpreting a resource is not a trivial one, so most systems provide
library functions.  You need basic functions to load and release the raw resources; typically
you can also use more sophisticated functions:

• To manage the loading and release of resources, often from multiple files.

• To build graphical dialogs and constructs from the information

• To transfer bitmap and drawing resources (fonts, icons, cursors, drawing primitives)
directly from the file to the screen without exposing their structure to the program.

• To insert parameters into the resource strings.

It’s not just enough to be able to load an unload resources into systems at runtime; you also
have to create the resources in the first place. Programming environments also provide facilities
to help you produce resources:

• A Resource compiler – which creates a resource file database from a text file
representation.
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• Dialog Editors.  These allow programmers to ‘screen paint’ screens and dialogs with
user controls; programmers can then create resource-file descriptions from the results.
An example is Microsoft Developer Studio (see Figure XX), but there are very many
others.

Figure 10: A Dialog Editor

2. Working with Resource Files to Save Memory.

Some resource file systems support compression. This has a small time overhead for each
resource loaded, but reduces the file system space taken by the files. ADAPTIVE COMPRESSION

algorithms are inappropriate for compression whole files, though, as it must be possible to
decode any data item independently of the rest of the file. You can compress individual
resources if they are large enough, such as images or sound files

It’s worthwhile to take some effort to understand how resource loading works on your specific
system as this can often help save memory.  For example, Windows also supports two kinds of
resource: PRELOAD and LOADONCALL.  Preloaded resources are loaded when the program is first
executed; a LOADONCALL resource loads only when the user code requests the specific resource.
Clearly to save memory, you should prefer LOADONCALL.  Similarly Windows 3.1 doesn’t load
strings individually, but only in blocks of 16 strings with consecutive ID numbers.  So you can
minimise memory use by arranging strings in blocks, such that the strings in a single block are
all used together. By way of contrast, the Windows LoadIcon function doesn’t itself access the
resource file; that happens later when a screen driver needs the icon – so calling LoadIcon
doesn’t in itself use much memory. Petzold [1998] discusses the memory use of Windows
resource files in more detail.

3. Font Files

You often want to treat font resources very differently from other kinds of resources.  For a
start, all applications will share the same set of fonts, and font descriptions tend to be much
larger than other resources. A sophisticated font handling system will load only portions of
each file as required by specific applications: perhaps only the implementation for a specific
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font size, or only the characters required by the application for a specific string.  The last
approach is particularly appropriate for fonts for the Unicode characters, which may contain
many thousands of images [Pike and Thompson 1993].

4. Implementing a resource file system.

Sometimes you need to implement your own resource file system.  Here are some issues to
consider:

4.1  Selecting variants. How will the system select which version of the resource files is
loaded?  There are various options.  Some systems include only one resource file with each
release.  Others (e.g. most MS Windows applications) support variants for languages, but
install only one; changing language means overwriting the files.  Still other systems select the
appropriate variant on program initialisation; for example chooses the variant by file extension
(if the current language is number 01, application Word loads resource file WORD.R01).  Other
systems may even permit the system to change its language ‘on the fly’, although this is bound
to require complex interactions between applications.

4.2  Inserting parameters into strings. The most frequent use of resources is in strings.  Now
displayed strings often contain variable parameters: “You have CC things to do, NN”, where
the number NN and the name CC vary according to the program needs. How do you insert
these parameters?

A common way is to use C’s printf format: “You have %d things to do, %s”.  This works
reasonably, but has two significant limitations.  First, the normal implementation of printf
and its variants are liable to crash the program if the parameters required by the resource
strings are not those passed to the strings.  So a corrupt or carelessly constructed resource file
can cause unexpected program defects.  Second, the printf format isn’t particularly flexible
at supporting different language constructions – a German, for example, might want the two
parameters in the other order: “%s: you have %d things to do.”.

A more flexible alternative is to use numbered strings in the resource strings:  “You have %1
things to do, %2”.  The program code has responsibility to convert all parameters to strings
(which is simple, and can be done in a locale-sensitive way), and a standard function inserts the
strings into the resource string.  It is a trivial task to implement this function to provide default
behaviour or an error message if the number of strings passed doesn’t match the resource
string.

Examples
Here’s an example of an MS Windows resource file for an about box:

// About Box Dialog
//

IDD_ABOUTBOX DIALOG DISCARDABLE  34, 22, 217, 55
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "About DEMOAPP"
FONT 8, "MS Sans Serif"
BEGIN
    ICON            2,IDC_STATIC,11,17,18,20
    LTEXT           "Demonstration Application by Charles Weir",
                     IDC_STATIC,40,10,79,8
    LTEXT           "Copyright \251 1999",IDC_STATIC,40,25,119,8
    DEFPUSHBUTTON   "OK",IDOK,176,6,32,14,WS_GROUP
END

The C++ code to use this using the Microsoft Foundation Classes is remarkably trivial:
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///////////////////////////////////////////////////////////////////////////
// CAboutDlg dialog

CAboutDlg::CAboutDlg(CWnd* pParent /*=NULL*/)
    : CDialog(CAboutDlg::IDD, pParent)
{
    //{{AFX_DATA_INIT(CAboutDlg)
        // NOTE: the ClassWizard will add member initialization here
    //}}AFX_DATA_INIT
}

Note the explicit syntax of the comment, {{AFX_DATA_INIT(CAboutDlg); this allows other
Microsoft tools and ‘wizards’ to identify the location; the Wizard can determine any variable
fields in the dialog box, and insert code to initialise them and to retrieve their values after the
dialog has completed.  In this case there are no such variables, so no code is present.

v v v

Known Uses
Virtually all Apple Macintosh and MS Windows GUI programs use resource files to store GUI
resources, especially fonts [Apple 1985; Petzold 1998]. EPOC stores all language-dependent
information (including compressed help texts) in resource files, and allows the system to select
the appropriate language at run-time. EPOC’s Unicode font handling minimises the memory
use of the font handler with a FIXED-SIZE MEMORY buffer to store a cached set of character
images.EPOC16 used compression to reduce the size of its resource files [Edwards 1997].

Many computer games use resource files – from hand-helds with extra static ROM, to early
microcomputers backed with cassette tapes and floppies, and state-of-the-art game consoles
based on CD-ROMs.  The pattern allows them to provide many more screens, levels, or maps
than could possibly fit into main memory. Each level is stored as a separate resource in
secondary storage, and then loaded when then user reaches that level. Since the user only plays
on one level at any time, memory requirements are reduced to the storage required for just one
level.  This works well for arcade-style games where users play one level, then proceed to the
next (if they win) or die (if they lose), because the sequence of levels is always predictable.
Similarly many of the variations of multi-user adventure games keep the details of specific
games: locations, local rules, monsters, weapons as resource files; as they tend to be large, they
are often stored COMPRESSED.

See Also
DATA FILES provide writable data storage; APPLICATION SWITCHING and PACKAGES do for code
what RESOURCE FILES does for unmodifiable data.

Each resource file can be stored in SECONDARY STORAGE or READ-ONLY MEMORY, and may use
COMPRESSION..

Petzold [1998] and Microsoft [1997] describe Microsoft Windows Resource files. Tasker et al
[2000] describes using EPOC resource files.

______________________________
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Packages
Also known as: Components, Lazy Loading, Dynamic Loading, Code Segmentation.

How can you manage a large program with lots of optional pieces?

• You don’t have space in memory for all the code and is static data.

• The system has lots of functionality, but not all will be used simultaneously

• You may require any arbitrary combination of different bits of functionality.

• Development works best when there’s a clear separation between developed
components.

Some big programs are really small programs much of the time —  the memory requirements
of all the code are much greater the requirements for the code actually used in any given run of
the program.  For example Strap-It-On’s Spin-the-WebTM web browser can view files of many
different kinds at once, but it typically reads only the StrapTML local pages used by its help
system. Yet the need to support other file types increases the program’s code memory
requirements even when they are not needed.

In these kinds of programs, there is no way of predicting in advance which features you’ll need,
nor of ordering them so that only one is in use at the same time.  So the APPLICATION SWITCHING

pattern cannot help, but you still want the benefits of that pattern – that the memory
requirements of the system are reduced by not loading all of the program in to main memory at
the same time.

Therefore: Split the program into packages, and load each package only when it’s needed.

Any run-time environment which stores code in disk files must have a mechanism to activate
executables loaded from disk.  With a relatively small amount of effort, you can extend this
mechanism to load additional executable code into a running program.  This will only be
useful, though, if most program runs do not need to load most of this additional code.

You need to divide the program into a main program and a collection of independently loaded
packages. The main program is loaded and starts running.  When it needs to use a facility in a
package, a code routine somewhere will load the appropriate package, and call the package
directly.

For example, the core of Spin-the-Web is a main program that analyses each web page, and
loads the appropriate viewer as a package.

Consequences
The program will require less memory because some of its code is stored on SECONDARY

STORAGE until needed.

The program will start up quicker, as only the small main program needs to be loaded initially,
and can begin running with less memory than would otherwise be required.  Because each
package is fairly small, subsequent packages can be loaded in quickly without pauses for
changing phases (as would be caused by the APPLICATION SWITCHING pattern).

Because packages aren’t statically linked into the application code, dynamic loading
mechanisms allow third parties or later developers to add functionality without changing or
even stopping the main program.  This significantly increases the system’s usability and
maintainability.

However: Programmer effort is needed to divide up the program into packages.



Packages UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 24

Many environments never unload packages, so the program’s memory requirements can
steadily increase, and the program can still run out of memory unless any given run uses only a
small part of its total functionality. It takes programmer effort to implement the dynamic
loading mechanism and to make the packages conform to it, and to define the strategy of when
to load and unload the packages; or to optimise the package division and minimise the loading
overhead.  This mechanism can often be reused across programs, or it may be provided by the
operating system; on the other hand many environments provide no support for dynamic
loading.

Because a package isn’t loaded until it’s required dynamic loading means that the system may
not detect a missing package until well after the program has loaded; this slightly reduces the
program’s usability.  Also if access to the package is slow (for example, over the Web), the
time taken to load a package can reduce the program’s responsiveness, which also reduces the
program’s usability.  This arbitrary delay also makes PACKAGES unsuitable for real-time
operations.

Packages can be located remotely and changed independently from the main program.  This
produces security implications – a hostile agent may introduce viruses or security loopholes
into the system by changing a package.

v v v

Implementation
To support packages, you need three things:

1) A system that loads code into RAM to execute it.

2) A partition of the software into packages such that normally only a subset of the packages
need be active.

3) Support for dynamically loadable packages —  usually position independent or relocatable
object code.

Here are some issues to consider when using or implementing packages as part of your system.

1.  Processes as Packages

Perhaps the simplest form of a package is just a separate process. With careful programming,
two processes that run simultaneously can appear to users as a single process, although there
can be a significant cost in performance and program complexity to achieve this.  Implementing
each package in separate processes has several key advantages:

• The package and main program will execute in separate address spaces, so a fatal error in
the package will not necessarily terminate the main program.

• The memory allocated to the package can be discarded easily, simply by terminating the
process when the package is no longer needed.

• In some cases, the desired package may already exist as an application in its own right.
For example we may want packages to do word-processing, drawing, or spreadsheet
managing.  Such applications exist already, and are implemented as separate processes.

There are two common approaches to use processes as packages:

1. The client can execute the process in the same way that, say, the operating system shell
might do.  It runs the process until its complete, perhaps reading its standard output (see
DATA FILES)



Packages UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 25

2. The client can use operating system Inter-Process Communication (IPC) mechanisms to
communicate with the process.

This second approach is taken by some forms of the Microsoft ActiveX (‘COM’) frameworks,
by IBM’s System Object Model (SOM) and by frameworks based on CORBA [Box 1998;
Szyperski 1997; Henning and Vinoski 1999; Egremont 1998].  Each uses some form of PROXY

[Gamma et al 1995, Buschmann et al 1996] to give the client access to objects in the package
object.  The Essential Distributed Objects Survival Guide [Orfali 1996] for a discussion and
comparison of these environments.

2.Using Dynamically Linked Libraries as C++ Packages

You can also consider using Shared, or Dynamically Linked, Libraries (DLLs) as packages.
Normally an executable loads all its DLLs during initialisation, so DLLs do not behave as
packages by default.  Most environments, however, provide additional mechanisms to load and
unload DLLs ‘on the fly’.

Some frameworks support delayed loading of DLLs: you can implement Microsoft COM
objects, for example, as DLLs that load automatically when each object is first accessed.
Although COM’s design uses C++ virtual function tables, many other languages have provided
bindings to access COM objects [Box 1998].

Other environments simply provide mechanisms to load the DLL file into RAM, and to invoke
a function within the DLL.  How can you use this to implement PACKAGES?

Typically you can identify their externally callable, exported, functions in DLLs either by
function name or by function ordinal  (the first exported function is ordinal 0, the second, 1,
etc.).  With either approach it would be quite a task to provide stubs for all the client functions
and patch each to the correct location in the DLL.

Instead you can use object-orientation’s dynamic binding to provide a simpler solution.  This
requires just a single call to one DLL entry point (typically at index 0 or 1).  This function
returns a pointer to a single instance of a class that supports an interface known to the client.
From then on the client may call methods on that instance; the language support for dynamic
linking ensures that the correct code executes.  Typically this class is an ABSTRACT FACTORY or
provides FACTORY METHODS [Gamma et al 1995]. Figure 11 shows such a library and the
classes it supports.
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Classes visible to software in the client
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Figure 11: Dynamically loaded package with abstract factory

3. Implementing Packages using Code Segmentation

Many processor architectures and operating systems provide code segmentation.  This
supports packages at the machine code or object code level. A segmented architecture considers
a program and the data that it accesses to be made up of some number of independent
segments, rather than one monolithic memory space [Tannenbaum 1992].

Typically each segment has its own memory protection attributes —  a data segment may be
readable and writable by a single process, where a code segment from a shared library could be
readable by every process in the system.  As with packages, individual segments can be
swapped to and from secondary storage by the operating system, either automatically or under
programmer control.  Linkers for segmented systems produce programs divided up into
segments, again either automatically or following directives in the code.

Many older CPUs supported segmentation explicitly, with several segment registers to speed-
up access to segments, and to ensure that the code and data in segments can be accessed
irrespective of the segment's physical memory. Often processor restrictions limited the
maximum size of each segment (64K in the 8086 architecture). More modern processor
architectures tend to combine SEGMENTATION with PAGING.

4.  Loading Packages

If you’re not using segmentation or Java packages, you’ll have to write some code somewhere
in each application to load the packages.  There are two standard approaches to where you put
this code:

4.1 Manual loading: The client loads the package explicitly.  This is best when:

1) The client must identify which it requires of several packages with the same interface.
(E.g. loading a printer driver), or
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2) The library provides relatively simple functionality, and it’s clear when it needs to be
unloaded.

4.2 Autoloading: The client calls any function supported by the library.  This function is
actually a stub provided by the client; when called it loads the library and invokes the
appropriate entry point.  This is better when:

1) You want a simple interface for the client, or

2) There are many packages with complicated interdependencies, so there’s no easy algorithm
to decide when to load a package.

Both approaches are common.  For example, the Microsoft’s COM framework and most
EPOC applications do explicit loading; the Emacs text editor does autoloading [Box 1998;
Tasker 2000; Stallman 1984].

5. Unloading packages

You’ll save most memory if there’s a mechanism to unload packages that are no longer
required.  To do this you need also a way to detect when there is no longer a need for the
loaded code.  In OO-environments this is easy to decide: the loaded code is no longer needed
when there are no instances of objects supported by the package. So you can use REFERENCE

COUNTING or GARBAGE COLLECTION to decide when to unload the code.

Loading a package takes time, so some implementations choose to delay unloading packages
even when clients notify them that they may do so.  Ideally they must unload these cached
packages when system memory becomes short – the CAPTAIN OATES PATTERN.

6. Version Control and Binary Compatibility

You need to make sure that each package loaded works correctly with the component that
loaded it – even if the two pieces of code were developed and released at different times.  This
requirement is often called ‘binary compatibility’, and is distinct from ‘source code
compatibility’. The requirements of ‘binary compatibility’ depend both on the language and on
the compilation system used, but typically include:

• New versions of the clients expect the same externally visible entry points, parameters
and return values; new services support the same ones.

• New clients don’t add extra parameter values; new services don’t add extra returned
values.  This is related to the rules for sub-typing – see Meyer [1997].

• New services support the same externally visible state as before.

• New services don’t add new exceptions or error conditions unless existing clients have a
way to handle them.

The problem of version control can become a major headache in development projects, when
teams are developing several packages in parallel.  Java, for example, provides no built-in
mechanism to ensure that two packages are binary compatible; incompatible versions typically
don’t fail to load, but instead produce subtle program defects. To solve this problem, some
environments provide version control in the libraries.  Solaris, for example, supports major and
minor version numbers for its DLLs.  Minor version changes retain binary compatibility; major
ones do not.

Drossopoulou et al [1998] discusses the rules for Java in more detail.  [Symbian
Knowledgebase 2000] discusses rules for C++ binary compatibility.
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7. Optimising Packages

If you are using PACKAGES, you’ll only have a fraction of the total code and data in memory at
any given time – the working set.   What techniques can you use to keep this working set to a
minimum? You need to ensure that code that is used together is stored in the same package.
Unfortunately, although organizing compiled code according to classes and modules is a good
start, it doesn’t provide an optimum solution.  For example each of the many visual objects in
the Strap-it-On’s Mind-Mapping application have functionality to create themselves from
vague text descriptions, to render animated pictures on the screen, to interact in weird and
stimulating ways, to save themselves to store and to restore themselves again.  Yet a typical
operation on a mind-map will use only one of these types of functionality – but in every class
(see figure XX).

Segment: Display code

Segment: Persistence code

Segment: Object creation code

Class:
Abstract
Concept

Class:
Mistake

Class:
Verbal

Concept

Class:
Idea

Figure 13: Example - Class divisions don't give appropriate segments

You could reorganise the code so that the compilation units correspond to your desired
segments – but the results would be difficult to manage and for programmers to maintain.
Using the terminology of Soni et al [1995], the problem is that we must organise the compiled
code according to the execution architecture of the system, while the source code is organised
according to its conceptual architecture.  Most development environments provide profilers
that show this execution architecture, so it’s possible for programmers to decide a segmentation
structure – at the cost of some programmer effort – but how should they implement it?

Some compilation environments provide a solution.  Microsoft’s C++ Compiler and DEC’s
FORTRAN compiler, for example, allow the user to partition each compilation unit into
separate units of a single function, called ‘COMDATs’.  Programmers can then order these into
appropriate segments using a Link option: /ORDER:@filename [Microsoft 1997].   Sun’s
SparcWorks’ analyzer tool automates the procedure still further, allowing ‘experiments’ with
different segmentation options using profiling data, and providing a utility (er_mapgen) to
generate the linker map file directly from these experiments.

For linkers without this option, an alternative is to pre-process the source files to produce a
single file for each function, and then to order the resulting files explicitly in the linker
command line.  This requires additional programmer discipline, since it prevents us making
code and data local to each source file.
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Example
This EPOC C++ example implements the ‘Dynamically loaded package with abstract factory’
approach illustrated in Figure 11.  This component uses animated objects in a virtual reality
application.  The animated objects are of many kinds (people, machinery, animals, rivers, etc.),
only a few types are required at a time, and new implementations will be added later.  Thus the
implementations of the animated objects live in Packages, and are loaded on demand.

Classes visible to the Animation Component

The Person Implementation Package

:Animation Component

CAnimatedObject*
         NewObjectL()=0;

CAnimatedObjectFactory

CAnimatedObject*
         NewObjectL()

CPersonFactory

StartMove(...) = 0
etc.

CAnimatedObject

StartMove(...)
etc.

CPerson

Instantiates

RLibrary

Loads

U
se

s

Figure 14:  The Example Classes

1. Implementation of the Animation Component

EPOC implements packages as DLLs.  The code in the animation component must load the
DLL, and keep a handle to if for as long as it has DLL-based objects using its code.  It might
create a new CAnimatedObject using C++ something like the following (where the current
object has a longer lifetime than any of the objects in package, and iAnimatedObjectFactory
is a variable of type CAnimatedObjectFactory* )

iAnimatedObjectFactory = CreateAnimatedObjectFactoryFromDLL( fileName );
    CAnimatedObject* newAnimatedObject =
        iAnimatedObjectFactory->NewAnimatedObjectL();

The implementation of CreateAnimatedObjectFactoryFromDLL is as follows.   It uses the
EPOC class RLibrary as a handle to the library; the function RLibrary::Load loads the
library; RLibrary::Close unloads it again.  As with all EPOC code, it must implement
PARTIAL FAILURE if loading fails. Also libraryHandle is a stack variable, so we must ensure it
is Close’d if any later operations do a PARTIAL FAILURE themselves, using the cleanup stack
function, CleanupClosePushL.

CAnimatedObjectFactory* CreateAnimatedObjectFactoryFromDLL(const TDesC& aFileName)
{
    RLibrary libraryHandle;
    TInt r=libraryHandle.Load(aFileName);
    if (r!=KErrNone)
        User::Leave(r);
    CleanupClosePushL(libraryHandle);
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We must ensure that the library is the correct one.  In EPOC every library (and data file) is
identified by three Unique Identifier (UID) integers at the start of the file.  The second UID
(index 1) specifies the type of file:

if(libraryHandle.Type()[1]!=TUid::Uid(KUidAnimationLibraryModuleV01))
        User::Leave(KErrBadLibraryEntryPoint);

EPOC DLLs export functions by ordinal rather than by name [Tasker 1999a].  By convention
a call to the library entry point at ordinal one returns an instance of the FACTORY OBJECT,
CAnimatedObjectFactory.

    typedef CAnimatedObjectFactory *(*TAnimatedObjectFactoryNewL)();
    TAnimatedObjectFactoryNewL libEntryL=
        reinterpret_cast<TAnimatedObjectFactoryNewL>(libraryHandle.Lookup(1));
    if (libEntryL==NULL)
        User::Leave(KErrBadLibraryEntryPoint);
    CAnimatedObjectFactory *factoryObject=(*libEntryL)();
    CleanupStack::PushL(factoryObject);

We’ll keep this factory object for the lifetime of the package, so we pass the RLibrary handle
to its construction function:

    factoryObject->ConstructL(libraryHandle);
    CleanupStack::Pop(2); // libraryHandle, factoryObject
    return factoryObject;
}

The CAnimatedObjectFactory factory object is straightforward.  It merely stores the library
handle.  Like almost all EPOC objects that own resources, it derives from the CBase base
class, and provides a ConstructL function [Tasker et al 2000].  Some of its functions will be
called across DLL boundaries; we tell the compiler to generate the extra linkup code using the
EPOC IMPORT_C and EXPORT_C macros.

class CAnimatedObjectFactory : public CBase {
public:
    IMPORT_C ~CAnimatedObjectFactory();
    IMPORT_C void ConstructL(RLibrary& aLib);
    IMPORT_C virtual CAnimatedObject * NewAnimatedObjectL()=0;
private:
    RLibrary iLibraryHandle;
};

The implementations of the construction function and destructor are simple:
EXPORT_C void CAnimatedObjectFactory::ConstructL(RLibrary& aLib) {
    iLibraryHandle = aLib;
}

EXPORT_C CAnimatedObjectFactory::~CAnimatedObjectFactory() {
    iLibraryHandle.Close();
}

2. Implementation of the Package

The package itself must implement the entry point to return a new factory object, so it needs a
class that derives from CAnimatedObjectFactory:

class CPersonFactory : public CAnimatedObjectFactory {
public:
    virtual CAnimatedObject * NewAnimatedObjectL();
};

CAnimatedObject * CPersonFactory::NewAnimatedObjectL() {
    return new(ELeave) CPerson;
}

The package also needs the class to implement the CAnimatedObject object itself:
class CPerson : public CAnimatedObject {
public:
    CPerson();
    // etc.
};
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Finally, the library entry point simply returns a new instance of the concrete factory object (or
null, if memory fails).  EXPORT_C ensures that this function is a library entry point.  In MS
C++ we ensure that the function corresponds to ordinal one in the library by editing the ‘DEF’
file [Microsoft 1997]

EXPORT_C CAnimatedObjectFactory * LibEntry() {
    return new CPersonFactory;
}

v v v

Known Uses
Most modern operating systems (UNIX, MS Windows, WinCE, EPOC, etc.) support
dynamically linked libraries [Goodheart and Cox 1994, Petzold 1998, Symbian 1999].  Many
applications delay the loading of certain DLLs, particularly for add-ins – added functionality
provided by third parties. Lotus Notes loads viewer DLLs when needed;  Netscape and Internet
Explorer dynamically load viewers such as Adobe PDF viewer;  MS Word loads document
converters and uses DLLs for add-in extensions such as support for Web page editing. Some
EPOC applications explicitly load packages: the Web application loads drivers for each
transport mechanism (HTTP, FTP, etc.) and viewers for each data type.

Printer drivers are often implemented as packages. This allows you to add new printer drivers
without restarting any applications.  All EPOC applications dynamically load printer drivers
where necessary.  MS Windows 95 and NT do the same.

Many Lisp systems use dynamic loading.  GNU Emacs, for example, consists of a core text
editor package plus auto-loading facilities.  Most of the interesting features of GNU Emacs
exist as packages: intelligent language support, spelling checkers, email packages, web
browsers, terminal emulators, etc [Stallman 1984].

Java makes great use of dynamic loading. Java loads each class only when it needs it, so each
class is effectively a package.  Java implementations may discard classes once they don’t need
them any more, using garbage collection, although many environments currently do not.  Java
applets are also treated as dynamically loading packages by Web browsers. A browser loads
and run applets on pages it is displaying, and then stops and unloads applets when their
containing pages are no longer displayed. [Lindholm and Yellin 1999]. The Palm Spotless JVM
loads almost all classes dynamically, even those like String that are really part of the Java
Language [Taivalsaari et al 1999].

Many earlier processors supported segmentation explicitly in their architecture.  The 8086 and
PDP-11 processors both implement segment registers.  Programmers working in these
environments often had to be acutely aware of the limitations imposed by fixed segment sizes;
MS Windows 1, 2 and 3 all reflected the segmented architecture explicitly in the programming
interfaces [Hamacher 1984; Chappell 1994].

See Also
APPLICATION SWITCHING is a simpler alternative to this pattern, which is applicable when the task
divides into independent phases.   PAGING is a more complex alternative.  Unloaded packages
can live on SECONDARY STORAGE, and maybe use COMPRESSION.

ABSTRACT FACTORY provides a good implementation mechanism to separate the client interfaces
from the package implementations.  VIRTUAL PROXIES can be used to autoload individual
packages [Gamma et al 1995].  You may need REFERENCE COUNTING or GARBAGE COLLECTION to
decide when to unload a package.
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Coplien’s Advanced C++ Programming Styles and Idioms [1994] describes dynamically
loading C++ functions into a running program.

______________________________
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Paging Pattern
Also known as: Virtual Memory, Persistence, Backing Store, Paging OO DBMS.

How can you provide the illusion of infinite memory?1

• The memory requirements for the programs code and data are too big to fit into RAM.

• The program needs random access to all it’s code and data.

• You have a fast secondary storage device, which can store the code and data not
currently in use.

• To decrease programmer effort and usability, programmers and users should not be
aware that the program is using secondary storage.

Some systems’ memory requirements are simply too large to fit into the available memory.
Perhaps one program’s data structures are larger than the system’s RAM memory, or perhaps
a whole system cannot fit into main memory, although each individual component is small
enough on its own.

For example, the Strap-It-On’s weather prediction system, Rain-SightTM, loads a relatively
small amount of weather information from it’s radio network link, and attempts to calculate
whether the user is about to get rained on.  To do that, it needs to work with some very large
matrices indeed – larger than can fit in memory even if no other applications were present at
all.  So the Rain-Sight marketing team have already agreed to distribute a 5 Gb ‘coin-disk’
pack with every copy of the program, ample for the Rain-Sight data.  The problem facing the
Rain-Sight developers is how to use it.

You can manage data on secondary storage explicitly using a DATA FILE.  This has two
disadvantages.

• The resulting code needs to combine processing the data with shuffling it between
primary and secondary storage. The result will be complex and difficult to maintain,
costing programmer effort to implement and programmer discipline to use correctly,
because programmers will have to understand both domain-specific requirements of the
program, and the fine points of data access.

• In addition this approach will tend to be inefficient for random access to data.  If you
read each item each time it’s accessed, and write it back after manipulating it, this will
require a lot of slow secondary storage access.

Other techniques, such as COMPRESSION and PACKED DATA, will certainly reduce the RAM
memory requirements, but can only achieve a finite reduction; ultimately any system can have
more data than will fit into RAM.

Therefore:  Keep a system’s code and data on secondary storage, and move them to and from main
memory as required.

No software is completely random in its access to memory; at any given time a typical system
will be working with only a small subset of the code and data it has available.  So you need to

                                                  
1 Sometimes the program is just too big, to complex, or you are too lazy to segment,
subdivide, chain, phase, slice, dice, vitamise, or food process the code any more.  Why
should programmers have to worry about memory!  Infinite memory for all is a right, not a
privilege!  Those small memory guys are just no-life-losers!
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keep only a relatively small working set in memory; the rest of the system can stay on
secondary storage.  The software can access this working set very fast, since it’s in main
memory. If you need to access information on secondary storage, you must change the working
set, reading the new data required, and writing or discarding any data that occupied that space
beforehand.

You must ensure that the working set changes only slowly – that the software exhibits locality
of reference, and tends to access the same objects or memory area in preference to completely
random access. It helps that memory allocators will typically put items allocated together in the
same area of memory.   So objects allocated together will typically be physically near to each
other in memory, particularly when you’re using FIXED ALLOCATION.

There are three forms of this pattern in use today [Tannenbaum 1992, Goodheart 1994]:

Demand Paging is the most familiar form.  The memory management hardware, or interpreter
environment, implements virtual memory so that there is an additional page
table that maps addresses used in software to pages of physical memory.
When software attempts to access a memory location without an entry in the
page table, the environment frees up a page by saving its data, and loads the
new data from secondary storage into physical memory, before returning the
address of the physical memory found.

Swapping is a simpler alternative to paging, where the environment stops a process, and
writes out all its data to Secondary Storage.  When the process needs to
process an event, the environment reloads all the data from secondary storage
and resumes.  This approach is common on portable PCs, where the entire
environment is saved to disk, though the intent there is to save power rather
than memory.

Object Oriented Databases are similar to Demand Paging, but the unit of paged memory
is an object and its associated owned objects (or perhaps, for efficiency, a
cluster of such objects). This approach requires more programmer effort than
demand paging, but makes the data persistent, and allows multiple processes
to share objects.

So, for example, the Rain-Sight team decided to use Paging to make use of their disk.  The
Strap-OS operating system doesn’t support hardware-based paging, so the team hacked a Java
interpreter to implement paging for each Java object.   The team then defined objects to
implement each related part of the Rain-Sight matrices (which are always accessed together),
giving them acceptable performance and an apparent memory space limited only by the size of
the ‘coin disk’.

Consequences
Paging is the ultimate escape of the memory-challenged programmer.  The programmer is
much less aware of paging than any other technique, since paging provides the illusion of
essentially infinite memory —  the program’s memory requirements are no longer a problem.
So paging tends to increase other aspects of a system’s design quality, and maintainability
because memory requirements are no longer an overriding issue.

Paging needs little programmer effort and programmer discipline to use, because it doesn’t
need a logical decomposition of the program.  Because paging does not require any artificial
division of programs into phases or data into files it can make systems more usable.  Programs
using paging can easily accommodate more memory by just paging less, so paging improves
scalability, as well.
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Paging can make good local use of the available memory where the program’s memory use is
distributed globally over many different components, since different components will typically
use their data at different times.

However: Paging reduces a program’s time performance, since some memory accesses require
secondary storage reads and writes.  It also reduces the predictability of response times,
making it unsuitable for real-time systems.  Paging performs badly if the memory accesses do
not exhibit locality of reference, and this may require programmer effort to fix.

Paging needs fast secondary storage to perform well. Of course ‘fast’ is a relative term; lots of
systems have used floppy disks for paging. Because paging tends to make lots of small data
transfers rather than a few large ones, the latency of the secondary storage device is usually
more important than its throughput.  Furthermore, PAGING’s continuous use of secondary
storage devices increases the system’s power consumption, and reduces the lifetime of storage
media such as flash RAM and floppy disks.

Since paging doesn’t require programmer discipline, a program’s memory requirements can
tend to increase in paged systems, requiring more secondary storage and impacting the
program’s time performance. Paging requires no local support from within programs, but
requires low-level global support, often provided by the hardware and operating system, or an
interpreter or data manager. Because intermediate information can be paged out to secondary
storage, paging can affect the security of a system unless the secondary storage is as well
protected as the primary storage.

v v v

Implementation
Paging is typically supported by two main data structures, see Figure XXX.

Page frames live in main memory, and contain the ‘paged in’ RAM data for the program.
Each page frame also has control information: the secondary storage location corresponding to
the current data and a dirty bit, set when the page memory has been changed since loading
from secondary storage.

The page table also lives in main memory, and has an entry for each page on secondary
storage.  It stores that page is resident in memory, and if so, in which page frame it is stored.
Figure XXX below shows a Page Table and Page Frames.
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Figure 15:  Page Table and Page Frames

As you run a paging application, it accesses memory via the page table. Memory that is paged
in can be read and written directly: writing to a page should set the page’s dirty bit. When you
try to access a page that is ‘paged out ‘ (not in main memory) the system must load the page
from secondary storage, perhaps saving an existing page in memory back to secondary storage
to make room for the new page.  Trying to access a page in secondary storage page is called a
page fault.  To handle a page fault, or to allocate a new page, the system must find a free page
frame for the data.  Normally, the frame chosen will already contain active data, which must be
discarded, and if the dirty bit is set, the system must write the contents out to secondary
storage. Once the new frame is allocated, or its contents are loaded from secondary storage, the
page table can be updated and the program’s execution continue.

Here are some issues to consider when implementing paging.

1. Intercepting Memory Accesses

Probably the single most difficult part of implementing paging is the need to intercept memory
accesses.   In addition, this intercept must distinguish access for writing, which must set the
‘dirty bit’, from access for read, which doesn’t.

There are several possible mechanisms:

MMU Many modern systems have a Memory Management Unit (MMU) in addition to
the Central Processing Unit (CPU).  These provide a set of virtual memory
maps (typically one for each process), which map the memory locations
requested by the code to different real memory addresses. If the program
accesses an address that hasn’t been loaded, this causes a page fault interrupt,
and the interrupt driver will load the page from secondary storage.

The MMU also distinguishes pages as read-only and read-write.  An attempt to
write to a read-only page also causes a page-fault interrupt, which makes it easy
to set the dirty bit for that page.
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Interpreter It’s fairly straightforward to implement paging for interpreted environments.
The run-time interpreter must implement any accesses to the program or its
data, so it is relatively easy to intercept accesses and to distinguish reads from
writes.

Process
Swap

When you swap entire processes, you don’t need to detect memory access as
processes are not running when they are swapped out.

Data
Manager

For programs in an environment with no built-in paging, we can use ‘smart
pointers’ to classes to intercept each access to an object.  Then a data manager
can ensure that the object is in store and to manage loading, caching and
swapping.

In this case it’s appropriate to page entire objects in and out, rather than
arbitrarily sized pages.

2. Page Replacement

How can you select which page frame to choose to free up to take a new or loaded page? The
best algorithm is to remove the page that will be needed the furthest into the future — the least
important page for the system's immediate needs [Tannenbaum 1992].  Unfortunately this is
usually impossible to implement, so instead you have to guess the future on the basis of the
recent past. Removing the least frequently used (LFU) page provides the most accurate
estimation, but is quite difficult to implement.  Almost as effective but easier to implement is a
least recently used (LRU) algorithm, which simply requires keeping a list of all page frames,
and moving each page to the top of this list as it is used. Choosing a page to replace at random
is easy to implement and provides sufficient performance for many situations.

Most implementations of MMU paging incorporate Segmentation techniques as well (see
PACKAGES).  Since you already have the process’s virtual data memory split into pages, it’s an
obvious extension to do the same for code.  Code is READ-ONLY, and typically needs only very
trivial changes when it’s loaded from secondary storage to memory.  So there’s no point in
wasting space in the swap file; you can take the code pages directly from the code file when
you want them and discard them when they’re no longer needed.

3. Working Set Size

A program’s working set size is the minimum amount of memory it needs to run without
excessive page faults.  Generally, the larger the page size, the larger the working set size.  A
program’s working set size determines whether it will run well under any given paging system.
If the working set size is larger than the real memory allocated to page frames, then there will
be an excessive number of page faults. The system will start thrashing, spending its time
swapping pages from main memory to secondary storage and back but making little progress
executing the software.

To avoid thrashing, do less with your program, add real memory to the system, or optimise the
program’s memory layout using the techniques discussed in the PACKAGES PATTERN.

4. Program Control of Paging

Some programs do not have locality of reference. For example a program might traverse all its
data reading each page exactly once in order.  In this case, each page will be paged in only
once, and the best page to replace will be the most frequently or recently used.  To help in such
a case, some systems provide an interface so that the programmer can control the paging
system. For example, the interface might support a request that a particular page be paged out.
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Alternatively it might allow a request that a particular page be paged in —  for example the
program above will know which page will be needed next even before processing the current
page.

Other program code may have real-time constraints.  Device drivers, for example, must
typically respond to interrupt events within microseconds.  So device driver data must not be
paged out.   Most systems support this by ‘tagging’ certain areas of code as with different
attributes.  For example, Microsoft’s Portable Executable Format supports Pre-load and
Memory-resident options for its ‘virtual device driver’ executable files [Microsoft 1997]

Example

The following code implements a simple framework to page individual C++ objects.

It’s very difficult indeed to intercept all references to a C++ object without operating system
support – in particular we can’t intercept the ‘this’ pointer in a member function.  So it’s a
bad idea to page instances of any C++ class with member functions.  Instead we make each
object store its data in a separate data structure and access that structure through special
member functions that control paging.  The object itself acts as a PROXY for the data, storing a
page number rather than a pointer to the data.   Figure XX below shows a typical scenario:

Page Table Page Frame
Array

Application
Objects

Page Frame
Page Frame
Page Frame
Page Frame

Proxy Object

pageNumber = 2

Proxy Object

pageNumber = 5

Proxy Object
(data on disk)

pageNumber = 3

... etc.

(null)

(null)
(null)

(null)
(null)
(null)
(null)

(null)

Loaded Object Data
Loaded Object Data
Loaded Object Data
Loaded Object Data

Page Buffers

Figure 16: Objects in memory for the Paging Example

The Page Table optimises access to the data in RAM: if its entry is non-null for a particular
page, that page is loaded in RAM and the application object can access its data directly.  If an
application object tries to access a page with a null Page Table entry, it means that object’s
data isn’t loaded.  In that case the paging code will save or discard an existing page frame and
load that object’s data from disk.

1. Example Client Implementation

Here’s an example client implementation that uses the paging example.  It’s a simple bitmap
image containing just pixels.  Other paged data structures could contain any other C++
primitive data types or structs, including pointers to objects (though not pointers to the paged
data structure instances, of course, as these will be paged out).
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typedef char Pixel;

class BitmapImageData {
    friend class BitmapImage;
    Pixel pixels[SCREEN_HEIGHT * SCREEN_WIDTH];
};

The PROXY class, BitmapImage, derives its paging functionality from the generic
ObjectWithPagedData.  The main constraint on its implementation is that all accesses to the
data object must be through the base class GetPagedData functions, which ensure that the data
is paged into RAM.  It accesses these through functions to cast these to the correct type:

class BitmapImage : public ObjectWithPagedData {
private:
    BitmapImageData* GetData()
        { return static_cast<BitmapImageData*>(GetPagedData()); }
    const BitmapImageData* GetData() const
        { return static_cast<const BitmapImageData*>(GetPagedData()); }

The constructor must specify the PageFile object and initialise the data structure.  Note that
all these functions can be inline:

public:
    BitmapImage( PageFile& thePageFile )
        : ObjectWithPagedData(thePageFile) {
        memset( GetData(), 0, sizeof(BitmapImageData) );
    }

And all functions use the GetData functions to access the data.  Note how the C++ const-
correctness ensures that we get the correct version of the data function; non-const accesses to
GetData() will set the ‘dirty bit’ for the page so it gets written back to file when paged out.

    Pixel GetPixel(int pixelNumber) const {
        return GetData()->pixels[pixelNumber];
    }
    void SetPixel(int pixelNumber, Pixel newValue) {
        GetData()->pixels[pixelNumber] = newValue;
    }
};

And that’s the full client implementation.  Simple, isn’t it?

To use it we need to set up a page file – here’s one with just four page buffers:
PageFile pageFile("testfile.dat", sizeof( BitmapImageData ), 4 );

And then we can use can use BitmapImage as any other C++ object:
BitmapImage* newImage = new BitmapImage(pageFile);
newImage->SetPixel(0, 0);
delete newImage;

2. Overview of the Paging Framework

 Figure XXX below shows the logical structure of the Paging Framework using UML notation
[Fowler and Scott 1997].  The names in normal type are classes in the framework; the others
are implemented as follows:

• Page Table Entry is a entry in the pageTable pointer array.
• Page in RAM is a simple (void*) buffer.
• Page on Disk is a fixed page in the disk file.

• Client Implementation is any client class, such as the BitmapImage class above.
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Figure 17:  UML Diagram:  Logical structure of the object paging system

The page frames and page table are a FIXED DATA STRUCTURE, always occupying the same
memory in RAM.

3. Implementation of ObjectWithPagedData

ObjectWithPagedData is the base class for the Client implementation classes.  It contains only
the page number for the data, plus a reference to the PageFile object.  This allows us to have
several different types of client object being paged independently.

class ObjectWithPagedData {
private:
    PageFile& pageFile;
    const int pageNumber;

All of its member operations are protected, since they’re used only by the client
implementations.  The constructor and destructor use functions in PageFile to allocated and
free a data page:

ObjectWithPagedData::ObjectWithPagedData(PageFile& thePageFile)
    : pageFile( thePageFile ),
      pageNumber( thePageFile.NewPage() )
{}

ObjectWithPagedData::~ObjectWithPagedData() {
    pageFile.DeletePage(pageNumber);
}

We need both const and non-const functions to access the paged data.  Each ensures there’s a
page frame present, then accesses the buffer; the non-const version uses the function that sets
the dirty flag for the page frame:

const void* ObjectWithPagedData::GetPagedData() const {
    PageFrame* frame = pageFile.FindPageFrameForPage( pageNumber );
    return frame->GetConstPage();
}

void* ObjectWithPagedData::GetPagedData() {
    PageFrame* frame = pageFile.FindPageFrameForPage( pageNumber );
    return frame->GetWritablePage();
}

3. Implementation of PageFrame

A PageFrame object represents a single buffer of ‘real memory’. If the page frame is ‘In Use’,
a client object has accessed the buffer and it hasn’t been saved to disk or discarded.  The
member currentPageNumber is set to the appropriate page if the frame is In Use, or else to
INVALID_PAGE_NUMBER.  PageFrame stores the ‘dirty’ flag for the buffer, and sets it when any
client accesses the GetWritablePage function.
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class PageFrame {
    friend class PageFile;

private:
    enum { INVALID_PAGE_NUMBER = -1 };
    bool  dirtyFlag;
    int   currentPageNumber;
    void* bufferContainingCurrentPage;

The constructor and destructor simply initialise the members appropriately:
PageFrame::PageFrame( int pageSize )
    : bufferContainingCurrentPage( new char[pageSize] ),
      dirtyFlag( false ),
      currentPageNumber(PageFrame::INVALID_PAGE_NUMBER)
{}

PageFrame::~PageFrame() {
    delete [] (char*)(bufferContainingCurrentPage);
}

GetConstPage and GetWritablePage provide access to the buffer:
const void* PageFrame::GetConstPage() {
    return bufferContainingCurrentPage;
}

void* PageFrame::GetWritablePage() {
    dirtyFlag = true;
    return bufferContainingCurrentPage;
}

And the other two member functions are trivial too:
int PageFrame::PageNumber() {
    return currentPageNumber;
}
bool PageFrame::InUse() {
    return currentPageNumber != INVALID_PAGE_NUMBER;
}

4. Implementation of PageFile

The PageFile object manages all of the important behaviour of the paging system.  It owns the
temporary file, and implements the functions to swap data buffers to and from it.

PageFile’s main structures are as follows:

pageTable is a vector, with an entry for each page in the page file.  These entries
are null if the page is swapped to secondary storage, or point to a
PageFrame object is the page is in RAM.

pageFrameArray contains all the PageFrame objects.  It’s an array to make it easy to
select one at random to discard.

listOfFreePageNumbers contains a queue of pages that have been deleted.  We cannot
remove pages from the page file, so instead we remember the page
numbers to reassign when required.

So the resulting private data is as follows:
class PageFile {
    friend class ObjectWithPagedData;
private:
    vector<PageFrame*> pageTable;
    vector<PageFrame*> pageFrameArray;
    list<int> listOfFreePageNumbers;
    const int pageSize;
    fstream fileStream;

PageFile’s constructor must initialise the file and allocate all the FIXED DATA STRUCTURES.  It
requires a way to abort if the file open fails; this example simply uses a variant of the ASSERT
macro to check:
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PageFile::PageFile( char* fileName, int pageSizeInBytes, int nPagesInCache )
    : fileStream( fileName,
                  ios::in| ios::out | ios::binary | ios::trunc),
      pageSize( pageSizeInBytes ) {
    ASSERT_ALWAYS( fileStream.good() );
    for (int i = 0; i<nPagesInCache; i++) {
        pageFrameArray.push_back( new PageFrame( pageSize ) );
    }
}

The destructor tidies up memory and closes the file.  A complete implementation would delete
the file as well:

PageFile::~PageFile() {
    for (vector<PageFrame*>::iterator i = pageFrameArray.begin();
         i != pageFrameArray.end(); i++ )
        delete *i;
    fileStream.close();
}

The function NewPage allocates a page on disk for a new client object.  It uses a free page on
disk if there is one, or else allocates a new pageTable entry and expands the page file by
writing a page of random data to the end.

int PageFile::NewPage() {
    int pageNumber;
    if (!listOfFreePageNumbers.empty()) {
        pageNumber = listOfFreePageNumbers.front();
        listOfFreePageNumbers.pop_front();
    } else {
        pageNumber = pageTable.size();
        pageTable.push_back( 0 );
        int newPos = fileStream.rdbuf()->pubseekoff( 0, ios::end );
        fileStream.write(
            (char*)pageFrameArray[0]->bufferContainingCurrentPage,
            PageSize() );
    }
    return pageNumber;
}

The corresponding DeletePage function is trivial:
void PageFile::DeletePage(int pageNumber) {
    listOfFreePageNumbers.push_front(pageNumber);
}

The function FindPageFrameForPage assigns a PageFrame for the given page number and
ensures that the page is in RAM.  If there’s already a PageFrame for the page, it just returns
the pointer; otherwise it finds a PageFrame and fills it with the requested page from disk.

PageFrame* PageFile::FindPageFrameForPage( int pageNumber ) {
    PageFrame* frame = pageTable[pageNumber];
    if (frame == 0) {
        frame = MakeFrameAvailable();
        LoadFrame( frame, pageNumber );
        pageTable[pageNumber] = frame;
    }
    return frame;
}

The function MakeFrameAvailable assigns a frame by paging out or discarding an existing
page, chosen at random.

PageFrame* PageFile::MakeFrameAvailable() {
    PageFrame* frame = pageFrameArray[ (rand() * pageFrameArray.size()) /
                                     RAND_MAX ];
    if (frame->InUse()) {
        SaveOrDiscardFrame( frame );
    }
    return frame;
}
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The function that provides the meat of the paging algorithm is SaveOrDiscardFrame.  This
writes out the page to the corresponding location in file – if necessary – and resets the page
table entry.

void PageFile::SaveOrDiscardFrame( PageFrame* frame ) {
    if (frame->dirtyFlag) {
        int newPos = fileStream.rdbuf()->pubseekoff( frame->PageNumber() *
                                                     PageSize(), ios::beg );
        fileStream.write( (char*)frame->bufferContainingCurrentPage,
                          PageSize() );
        frame->dirtyFlag = false;
    }
    pageTable[frame->PageNumber()] = 0;
    frame->currentPageNumber = PageFrame::INVALID_PAGE_NUMBER;
}

And finally, the corresponding function to load a frame is as follows:
void PageFile::LoadFrame( PageFrame* frame, int pageNumber ) {
    int newPos = fileStream.rdbuf()->pubseekoff( pageNumber * PageSize(),
                                                 ios::beg );
    fileStream.read( (char*)frame->bufferContainingCurrentPage, PageSize() );
    frame->currentPageNumber = pageNumber;
 }

v v v

Known Uses
Almost every modern disk operating system provides paged virtual memory, including most
versions of UNIX including LINUX, Mac OS, and MS Windows [Goodheart 1994; Card,
Dumas, Mével 1998, Microsoft 1997]

OO Databases almost all use some form of object paging.  ObjectStore uses the UNIX (or NT)
paging support directly, but replaces the OS-supplied paging drivers with drivers that suit the
needs of OO programs with persistent data [Chaudhri 1997].

Infocom games implemented a paged interpreter on machines like Apple-IIs and early PCs,
paging main memory to floppy disks [Blank and Galley 1995]. This enabled games to run on
machines with varying sizes of memory —  although of course games would run slower if there
was less main memory available. The LOOM system implemented paging in Smalltalk for
Smalltalk [Kaehler and Krasner 1983].

See Also
The other patterns in this chapter —  PROCESSES, DATA FILES, PACKAGES, and RESOURCE FILES—
provide alternatives to this pattern. Paging can also use COPY ON WRITE to optimise access to
read-only storage, and can be extended to support SHARING. System Memory is a global
resource, so some operating systems implement CAPTAIN OATES, discarding segments from
different processes rather than from the process that requests a new page.

An INTERPRETER [Gamma et al 1995] can make PAGING transparent to user programs.  VIRTUAL

PROXIES and BRIDGES [Gamma et al 1995], and ENVELOPE/LETTER or HANDLE/BODY [Coplien
1994] can provide paging for objects without affecting the objects’ client interfaces.

______________________________



Major Technique: Compression Small Memory Systems  by Weir, Noble

© 2000 Charles Weir, James Noble Page 1

 Major Technique: Compression
Version   14/06/00 16:34 - Charles Weir 7

 How can you fit a quart of data into a pint pot of memory?

• The memory requirements of the code and data appear greater than the memory
available, whether primary memory, secondary storage, read-only memory or some
combination of these

• You cannot reduce the functionality and omit some of the data or code

• You need to transmit information across a communications link as quickly as possible.

• You cannot choose SMALL DATA STRUCTURES to reduce the memory requirements further

Sometimes you just don’t have enough memory to go around.  The most usual problem is that
you need to store more data than the space available, but sometimes the executable code can be
too large.    You can often choose suitable DATA STRUCTURES to ensure that the right amount of
memory is allocated to store the data; you can also use SECONDARY STORAGE and READ-ONLY

STORAGE move the data out of RAM.  These techniques have one important limitation, however:
they don’t reduce the total amount of storage, of all kinds, needed to support the whole system.

For example, the Strap-It-On wrist-mounted PC needs to store the data for the documents the
user is working on.  It also needs sound files recorded by the internal microphone, data traces
from optional body well-being monitors, and a large amount of executable code downloaded by
the user to support “optional applications” (typically Tetris, Doom and Hunt-the-Wumpus, but
sometimes work-related programs as well!).  This information can certainly exceed the capacity
of the Strap-It-On’s primary memory and secondary storage combined.   How can we improve
the Strap-It-On’s usability without forcing every user to carry around the optional 2 Gb disk
back-pack?

No matter how much memory such a system may have, you will always find users who need
more.  Extra storage is expensive, so you should use what you have as effectively as possible.

Therefore:  Use a compressed representation to reduce the memory required.

Store the information in a compressed form and decompress it when you need to access it.
There are a wide variety of compression algorithms and approaches you can choose from, each
with different space and time trade-offs.

So, for example, the Strap-It-On PC stores its voice sound files using GSM compression; its
music uses MP3; its data traces use DIFFERENCE COMPRESSION; its databases use TABLE

COMPRESSION; and its documents are stored using GZIP. The device drivers for Strap-It-On’s
secondary storage choose the appropriate ADAPTIVE COMPRESSION technique based on the file
type, ensuring all files are stored in a compressed form.

Consequences
The memory requirements of your system decrease because compressed code and data need less
space than uncompressed code or data.  Some forms of time performance may also improve –
for example, reading from slow secondary storage devices or over a network.

However: Compressed information is often more difficult to process from within the program.
Some compression techniques prevent random access to the compressed information.   You may
have to decompress an entire data stream to access any part of it – requiring enough main



Major Technique: Compression Small Memory Systems  by Weir, Noble

© 2000 Charles Weir, James Noble Page 2

memory to store all the decompressed information, in addition to the memory needed for the
decompression itself.

The program has to provide compression and decompression support, making it more complex
to maintain, requiring a fair amount of programmer effort to implement,  increasing the testing
cost of the program and reducing the realtime responsiveness.

The compression process also takes time and extra temporary memory increasing the
possibilities for failure; compression can also increase a program’s power consumption. In
some cases – program code, resource file data, and information received via telecommunications
– the compression cost may be paid once by large powerful machines better able to handle it.
The amount of memory required to store a given amount of data becomes less predictable,
because it depends upon well the data can be compressed.

v v v

Implementation
The key idea behind compression is that most data contains a large amount of redundancy —
information that is not strictly required [Bell, Cleary, Whitten, 1990].  The following sections
explore several types of redundancy, and discuss compression techniques to exploit each type.

1. Mechanical Redundancy

Consider the ASCII character set.  ASCII defines around 100 printable characters, yet most text
formats use eight, sixteen, or even thirty-two bits to store characters for processing on modern
processors.  You can store ASCII text using just seven bits per character; this would reduce
memory used at a cost of increased processing time, because most processors handle eight or
thirty-two bit quantities much more easily than seven bit quantities. Thus, 1 bit in a single byte
encoding, or 9 bits in a sixteen bit UNICODE encoding are redundant. This kind of redundancy
is called mechanical redundancy.

For text compression, the amount of compression is usually expressed by the number of
(compressed) bits required per character in a larger text.   For example, storing ASCII
characters in seven bit-bytes would give a compression of 7 bits per character.   For other forms
of data we talk about the compression ratio – the compressed size divided by the decompressed
size.   Using 7 bit ASCII to encode a normal 8-bit ASCII file would give a compression ratio of
7/8, or 87.5%.

TABLE COMPRESSION and SEQUENCE CODING explore other related forms of mechanical
redundancy.

2. Semantic Redundancy

Consider the traditional English song:

Verse 1:
Voice: Whear ‘as tha been sin’ I saw thee?

Reply: I saw thee
Chorus:  On Ilkley Moor Bah t’at
Voice: Whear ‘as tha been sin’ I saw thee?

Reply: I saw thee
Voice: Whear ‘as tha been sin’ I saw thee?

Chorus:  On Ilkley Moor Bah t’at
Reply:  Bah t’at

Chorus: On Ilkley Moor Bah t’at
On Ilkley Moor Bah t’at
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Verse 2:
Voice: Tha’s been a-coortin’ Mary Jane

Reply: Mary Jane
Chorus:  On Ilkley Moor Bah t’at

…  etc., for 7 more verses.

This song has plenty of redundancy because of all the repeats and choruses; you don’t need to
store every single word sung to reproduce the song.  The songbook ‘Rise up singing’ [Blood
and Paterson 1992] uses bold type, parentheses and repetition marks to compress the complete
song to 15 short lines, occupying a mere 6 square inches on the page without compromising
readability:

1. Whear ‘ast tha been sin’ I saw thee (I saw thee)
On Ilkley Moor Bah T’at
Whear ‘ast tha been sin’ I saw thee (2x)

On Ilkley Moor bah t’at (bah t’at) on Ilkley Moor bah t’at
On Ilkely Moor bah t’at.
2. Tha’s been a-coortin’ Mary Jane
3. Tha’ll go an’ get thee death o’ cowld

… etc., for 6 more lines

LZ compression (see ADAPTIVE COMPRESSION) and its variants use a similar but mechanical
technique to remove redundancy in text or binary data.

3.  Lossy Compression

Compression techniques that ensure that the result of decompression is exactly the same data as
before compression are known as lossless.  Many of the more powerful forms of compression
are lossy. With lossy compression, decompression will produce an approximation to the original
information rather than an exact copy.  Lossy compression uses knowledge of the specific kind
of data being stored, and of the required uses for the data.

The key to understanding lossy compression is the difference between data and information.
Suppose you wish to communicate the information represented by the word “elephant” to an
audience.  Sent as a text string, ‘elephant’ occupies 8 7-bit ASCII characters, or 56 bits.
Alternatively, as a spoken word encoded in 16 bit samples 8000 times per second, ‘elephant’
requires 1 second of samples, i.e. 128 KBits.  A full-screen colour image of an elephant at
640*480 pixels might require 2.5 Mbits, and a video displayed for one second at 50 frames per
second could take 50 times that, or 125 Mbits. None of the more expensive techniques convey
much more information than just the text of “elephant”, however.  If all you are interested in the
basic concept of an “elephant”, most of the data required by the other techniques is redundant.
You can exploit this redundancy in various ways.

Simplest, you can omit irrelevant data.  For example you might be receiving uncompressed
sound data represented as 16 bit samples.  If your sound sampler isn’t accurate enough to
record 16-bit samples, the least significant 2 bits in each sample will be random, so you could
achieve a simple compression by just storing 14 instead of 16 bits for each sample.

You can also exploit the nature of human perception to omit data that’s less important.  For
example, we perceive sound on a ‘log scale’; the ear is much less sensitive to differences in
intensity when the intensity is high than when intensity is low.  You can effectively compress
sound samples by converting them to a log scale, and supporting only a small number of
logarithmic intensities.  This is the principle of some simple sound compression techniques,
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particularly mu-law and a-law, which compress 14 bit samples to 8 bits in this way [CCITT
G.711, Brokish and Lewis 1997].

You can take this idea of omitting data further, and transform the data into a different form to
remove data irrelevant to human perception.  Many of the most effective techniques do this:

JPEG The most commonly used variants of the JPEG standard represent each 8x8 pixel
square as a composite of a standard set of 64 ‘standard pictures’ – a fraction of each
picture.  The transformation is known as the ‘cosine transform’.   Then the fractions are
represented in more or less detail according to the importance of each to human
perception.  This gives a format that compresses photographic data very effectively.
[ITU T.87, Gonzalez and Woods 1992]

GSM GSM compression represents voice data in terms of a mathematical model of the human
voice (Regular Pulse Excited Linear Predictive Coding)1.  In this way it encodes
separate 20mS samples in just 260 bits, allowing voice telephony over a digital link of
only 13 Kbps.  [Degener 1994]

GIF, PNG The proprietary GIF and standard PNG formats both map all colours in an
image to a fixed-size palette before encoding. [CompuServe 1990, Boutell 1996].

MP3 MP3 represents sound data in terms of its composite frequencies – known as the
‘Fourier Transformation’.  The MP3 standard specifies the granularity of
representation of each frequency according to its importance to the human ear and the
amount of compression required, allowing FM radio-quality sound in 56 Kb per second
[MP3].

MPEG The MPEG standard for video compression uses JPEG coding for initial frames.  It
then uses a variety of specific techniques – to spot motion in a variety of axes, changes
of light, etc. – to encode the differences between successive frames in minimal data
forms that fit in with the human perception of a video image [MPEG].

Some of these techniques exploit mechanical redundancy in the resulting data as well, using
TABLE COMPRESSION, DIFFERENCE CODING and ADAPTIVE techniques.

v v v

Specialised Patterns
The rest of this chapter contains specialised patterns describing compression and packing
techniques.  Each of these patterns removes different kinds of mechanical and semantic
redundancy, with different consequences for accessing the compressed data.

                                                  
1 GSM was developed using Scandinavian voices; hence all voices tend to sound Scandinavian on a
mobile phone.
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Figure 1: Compression Patterns

The patterns are as follows:

• TABLE COMPRESSION reduces the average number of bits to store each character (or
value) by mapping it to a variable number of bits, such that the most common characters
require the fewest bits.

• DIFFERENCE COMPRESSION addresses data series or sequences, by storing only the
differences between successive items.  Alternatively or additionally, if several successive
items are the same it stores simply a count of the number of identical items.

• ADAPTIVE COMPRESSION analyses the data before or while compressing it to produce a
more efficient encoding, storing the resulting parameters along with the compressed data
– or uses the data itself as a table to support the compression.

The PACKED DATA pattern, that reduces the amount of memory allocated to store random-access
data structures, can also been seen as a special kind of compression.

1. Evaluating Compression Techniques

There are many possible compression techniques. Here are some of the things to consider when
choosing an appropriate technique:

1.1 Processing and Memory Required.  Different techniques vary significantly in the
processing and memory costs they impose.  In general, DIFFERENCE CODING has the lowest
costs, followed by fixed TABLE COMPRESSION, and most forms of ADAPTIVE COMPRESSION have
quite high costs on both counts – but there are many exceptions to this rule.  Managing
Gigabytes [Witten, Moffat, Bell 1999] examines the costs in some detail.

1.2. Encoding vs. Decoding.  Some compression algorithms reduce the processing cost of
decoding the data by increasing the cost of encoding.  This is particularly advantageous if there
is one large and powerful encoding system and many decoders with a lower specification.  This
is a situation common in broadcast systems.

MP3 and MPEG, for example, require much more processing, code and memory to encode than
decode, which suits them for broadcast transmission [MP3,MPEG]. Interestingly LZ ADAPTIVE

COMPRESSION has the same feature, so ZIP archives can be distributed with their relatively
simple decoding software built-in [Ziv and Lempel 1977].
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Some compressed representations can be used directly without any decompression. For
example, Java and Smalltalk use byte coding to reduce the size of executable programs;
intermediate codes can be smaller than full machine language [Goldberg and Robson 1983,
Lindholm and Yellin 1999].  These byte codes are designed so that they can be interpreted
directly by a virtual machine, without a separate decompression step.

1.3. Programming Cost.  Some techniques are simple to implement; others have efficient
public domain or commercial implementations.  Rolling your own complicated compression or
decompression algorithm is unlikely to be a sensible option for many projects.

1.4. Random Access and Resynchronisation.  Most compression algorithms produce a stream
of bits.  If this stream is stored in memory or in a file, can you access individual items within
that file randomly, without reading the whole stream from the beginning?  If you’re receiving
the stream over a serial line and the some is corrupted or deleted, can you resynchronise that
data stream, that is, can you identify the start of a meaningful piece of data and continue
decompression?  In general, most forms of TABLE COMPRESSION can provide both random
access and resynchronisation; DIFFERENCE CODING can also be tailored to handle both;
ADAPTIVE COMPRESSION, however, is unlikely to work well for either.

Known Uses
Compression is used very widely.  Operating systems use compression to store more
information on secondary storage, communications protocols use compression to transmit
information more quickly, virtual machines use compression to reduce the memory requirements
of programs, and general purpose file compression tools are use ubiquitously for file archives.

See Also
As well as compressing information, you may be able to store it in cheaper SECONDARY

STORAGE or READ ONLY MEMORY.    You can also remove redundant data using SHARING

The excellent book ‘Managing Gigabytes’ [Witten, Moffat, Bell, 1999] explains all of this
chapter’s techniques for compressing text and images in much greater detail.  ‘Text
Compression’ [Bell, Cleary, Witten 1990] focuses on text compression.

 The online book, ‘Information Engineering Across the Professions’ [Cyganski, Orr, and Vaz
1998] has explanations of many different kinds of Text, Audio, Graphical and Video
compression.

The FAQ of the newsgroup comp.compression describes many of the most common
compression techniques. Steven Kinnear’s web page [1999] provides an introduction to
multimedia compression, with an excellent set of links to other sites with more detail.

‘Digital Video and Audio Compression’ [Solari 1997] has a good description of techniques for
multimedia compression.

 ______________________________
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Table Compression Pattern
Also know as: Nibble Coding, Huffman Coding.

How do you compress many short strings?

• You have lots of small-to-medium sized strings in your program —  all different

• You need to reduce your program’s memory requirements.

• You need random access to individual strings.

• You don’t want to expend too much extra programmer effort, memory space, or
processing time on managing the strings.

Many programs use a large number of strings —  stored in databases, read from RESOURCE

FILES, received via telecommunications links or hard-coded in the program.  All these strings
increase the program’s memory requirements for main memory, read-only memory, and
secondary storage.

Programs need to be able to perform common string operations such as determining their length
and internal characters, concatenating strings, and substituting parameters into format strings,
however strings are represented.  Similarly, each string in a collection of strings needs to be
individually accessible.  If the strings are stored in a file on secondary storage, for example, we
need random access to each string in the file.

Although storing strings is important, it is seldom the most significant memory use in the
system.  Typically you don’t want to put to much programmer effort into the problem.
Equally, you may not want to demand too much temporary memory to decompress each string.

For example, the Strap-It-On PC needs to store and display a large number of information and
error messages to the user.  The messages need to be stored in scarce main memory or read-only
memory, and there isn’t really enough space to store all the strings directly.  The Programs must
be able to access each string individually, to display them to the user when appropriate.  Given
that many of the strings describe exceptional situations such a memory shortage, they need to be
able to be retrieved and displayed quickly, efficiently, and without requiring extra memory.

Therefore: Encode each element in a variable number of bits so that the more common elements
require fewer bits.

The key to table compression is that some characters are statistically much more likely to occur
than others.   You can easily map from a standard fixed size representation to one where each
character takes a different number of bits.  If you analyse the kind of text you’re compressing to
find which characters are most probable, and map these characters to the most compact
encoding, then on average you’ll end up with smaller text.

For example the chart below shows the character frequencies for all the lower-case characters
and spaces in a draft of this chapter.
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Figure 2 Distribution of Characters in this Chapter

Obviously some characters (space, ‘e’) appear much more often than others do (‘z’, ‘j’). A
surprisingly large proportion of the characters is never used at all2.  The most common
character, space, occupies 15% of the memory required to hold the chapter.  The 15 most
common characters occupy 75% of the total memory.

Given that the Strap-It-On’s information and error messages have a similar distribution of
characters, its designers get a significant reduction in the storage space required by encoding the
most common characters in fewer bits, and the less common characters in more bits.  Using the
Huffman Encoding as described below, the designers of the Strap-it-on have achieved
compression of 5 bits per character for its error messages, with negligible costs in run-time
performance and temporary memory costs.

Consequences
Typically you get a reasonable compression for the strings themselves, reducing the program’s
memory requirements.  Sequential operations on compressed strings execute almost as fast as
operations on native strings, preserving time performance. String compression is quite easy to
implement, so it does not take much programmer effort. Each string in a collection of
compressed strings can be accessed individually, without decompressing all proceeding strings.

However: the total compression of the program data – including non-string data – isn’t high, so the
program’s memory requirements may not be greatly reduced.

String operations that rely on random access to the characters in the string may execute up to an
order of magnitude slower than the same operations on decompressed strings, reducing the
program’s time performance.  Because characters may have variable lengths, you can only
access a specific character by scanning from the start of the string.  If you want operations that
change the characters in the string you have to uncompress the string, make the changes, and
recompress it.

It requires programmer discipline to use compressed strings, especially for string literals within
the program code. Compressed strings require either manual encoding or a string pre-processing
pass, either of which increases complexity.

                                                  
2 Well, hardly ever. [kjxcheck reference:Gilbert&Sullivan]
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You have to test the compressed string operations, but these tests are quite straightforward.

v v v

Implementation
There are many techniques used for table compression [Whitten et al 2000].   The following
sections explore a few common ones.

1. Simple coding

If the underlying character set has only 128 characters, such as ASCII, it certainly makes sense
to store each character in seven bits, rather than eight, sixteen, or thirty-two bits.  But, as we
discussed above, in fact a large proportion of normal text could be encoded in just four bits.
Other non-European languages might be better with five or six bits.

If you encode most of the text into, say, small fixed size characters, what do you do with the
characters not within the most common set?  The answer is to use ‘escape codes’.  An escape
code is a special character that changes the meaning of the following character (or sometimes of
the characters up to the next escape code).

For example, a common simple coding technique is to use a nibble code, where each character
is coded into four bits.  A nibble code is a easy to implement, because a nibble is always half a
byte, making it easy to write the packed data.  In a basic nibble code, we might have only one
escape code, which is followed by the eight-bit ASCII code of the next character.  So using the
data in figure xx above to deduce the most common characters, we can construct an encoding
and decoding table as follows:

Plain text Encoded
Nibbles

Encoded Bits

? 0 0000
a 4 0100
b F 6 1 1111 0110 0001
c F 6 2 1111 0110 0010
d D 1101
e 1 0001
f F 6 5 1111 0110 0101
… etc

Thus the phrase “All the world’s a stage” would encode as follows:

Nibble coding

A l l t h e w o r l d ' s a s t a g e
Uncompressed sequence

Compressed representation
F 4 1 A A 0 2 C 1 0 3 6 A DF 7 7 5 0 4 0 5 2 4F 2 7 F 6 7 1 F

All values in hexadecimal.



Table Compression Pattern Small Memory Systems  by Weir, Noble

© 2000 Charles Weir, James Noble Page 10

Using this nibble code, 75% of characters in this chapter can be encoded in a 4 bits; the
remainder all require 12 bits.  On this simple calculation the average number of bits required
per character is 6 bits; when we implemented the nibble code and tested it on the file, we
achieved 5.4 bits per character in practice.

2. Huffman Coding

Why choose specifically 4 bits for the most common characters and 12 bits for the escaped
characters?  It would seem more sensible to have a more even spread, so that the most common
characters (e.g. space) use less than four bits, fairly common characters (‘u’, ‘w’) require
between four and eight bits, and only the least common ones (‘Q’, ‘&’) require more.  Huffman
Coding takes this reasoning to its extreme.  With Huffman coding, the ‘Encoded bits’ column in
table xxx becomes will contain bit values of arbitrary lengths instead of either 4 or 12 [Huffman
1952].

Decoding Huffman data is a little trickier.  Since you can’t just look up an unknown length bit
string in an array, Huffman tables are often represented as trees for decoding; each terminal
node in the tree is a decoded character.  To decode a bit string, you start at the root, then take
the left node for each 1 and the right node for each 0.  So, for example, if you had the following
simple encoding table for a 4-character alphabet, where A is the most frequent character in your
text, then D, then B and C:

Plain Text Encoded Bits
A 1
B 010
C 011
D 00

This can be represented as a Huffman Tree as:

0

0 1

1

0 1

A

CB

D

Start

Figure 3: Huffman Tree

For more about Huffman coding – more efficient decoding techniques and a discussion on
generating the Huffman encoding tables – see ‘Managing Gigabytes’ [Witten, et al 1999] or any
other standard reference on text compression.
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3. Encoding more than just characters

There’s no need to limit TABLE COMPRESSION to strings; anything that contains data items of
fixed numbers of bytes can be compressed in this way.  Other compression techniques, for
example, often apply Huffman coding to their intermediate representations to increase their
compression ratios (see, for example, the ADAPTIVE COMPRESSION technique GZIP).

TABLE COMPRESSION does not have to be restricted to compressing fixed-length items, as long as
each item has a clearly defined end.  For example, Huffman Word Compression achieves very
high compression ratios (3 bits per character or so) by encoding each word separately [Witten,
et al 1999].  To achieve this ratio, Huffman Word Compression requires a very large
compression table – the size of the dictionary used.

4. Compressing String Literals

Compressed strings are more difficult to handle in program code.  While programming
languages provide string literals for normal strings, they do not generally support compressed
strings.  Most languages support escape codes (such as “\x34”) that allow any numeric
characters to be stored into the string. Escape codes can be used store compressed strings in
standard string literals.  For example, here’s a C++ string that stores the nibble codes for the
“All the world’s a stage” encoding in figure XX.

const char* AllTheWorldsAStage =
          "\xf4\x1a\xa0\x2c\x10\xf7\x73\x6a\xdf\x27\x50\x40\x52\x4f\x67\x1f";

You can also write a pre-processor to work through program texts, and replace standard
encoded strings with compressed strings. This works particularly well when compressed strings
can be written as standard string or array literals.   Alternatively, in systems that store strings in
RESOURCE FILES, the resource file compiler can compress the string, and the resource file reader
can decompress it.

5. UTF8 Encoding

To support internationalisation, an increasing number of applications do all their internal string
handling using two-byte character sets – typically the UNICODE standard [Unicode 1996].
Given that the character sets for most European languages require less than 128 characters, the
extra byte is clearly redundant.  For storage and transmission, many environments encode
UNICODE strings using the UTF8 encoding.

In UTF8, each UNICODE double byte is encoded into one, two or three bytes (though the
standard supports further extensions).  The coding encodes the bits as follows:

UNICODE value 1st Byte 2nd Byte 3rd Byte

000000000xxxxxxx 0xxxxxxx

00000yyyyyxxxxxx 110yyyyy 10xxxxxx

Zzzzyyyyyyxxxxxx 1110zzzz 10yyyyyy 10xxxxxx

So in UTF8, the standard 7-bit ASCII characters are encoded in a single byte; in fact, the
UNICODE encoding is exactly the same as the one byte ASCII encoding for these characters.
Common extended characters are encoded as two bytes, with only the least common characters
requiring three bytes.  Every UTF8 character starts and ends on a byte boundary, so you can
identify a substring within a larger buffer of UTF8 characters using just a byte offset and a
length.
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UTF8 wasdesigned to be especially suitable for transmission along serial connections.  A
terminal receiving UTF8 characters can always determine which byte represents the start of a
UNICODE character, because either their top bit is 0, or the top two bits are ‘11’. Any UTF8
bytes with the top bits equal to “10” are always 2nd or 3rd in sequence and should be ignored
unless the terminal has received the initial byte.

Example
This example implements a nibble code to compress the text in this chapter.  Figure 3 below
shows the distribution of characters in the text, sorted by frequency, with the 15 most common
characters to the left of the vertical line.
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 Figure 4 Choosing the 15 most common characters.

Here is a Java example that implements this nibble code.  The StringCompression class uses
a byte array output stream to simplify creating the compressed string —  the equivalent in C++
would use an ostrstream instance.  The most common characters are represented in the string
NibbleChars:

    protected final String NibbleChars = " etoasrinclmhdu";
    protected final int NibbleEscape = 0xf;
    protected int lastNibble;
    protected ByteArrayOutputStream outStream;

The encodeString method takes each fixed-size character and encodes it, character by
character.  This function has to deal with end effects, ensuring the last nibble gets written to the
output file by padding it with an escape character.

protected byte[] encodeString(String string) {
        outStream = new ByteArrayOutputStream();
        lastNibble = -1;
        for (int i = 0; i < string.length(); i++) {
            encodeChar(string.charAt(i));
        }
        if (lastNibble != -1) {
            putNibble(NibbleEscape);
        }
        byte[] result = outStream.toByteArray();
        outStream = null;
        return result;
}

The most important routine encodes a specific character.  The encodeChar method searches
the NibbleChars string directly; if the character to be encoded is in the string it is output as a
nibble, otherwise we output an escape code and a high and low nibble.  A more efficient
implementation could use a 256-entry table lookup.
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protected void encodeChar(int charCode) {
        int possibleNibble = NibbleChars.indexOf(charCode);
        if (possibleNibble != -1) {
            putNibble(possibleNibble);
        } else {
            putNibble(NibbleEscape);
            putNibble(charCode >>> 4);
            putNibble(charCode & 0xf);
        }
    }

The putNibble method simply adds one nibble to the output stream.  We can only write whole
bytes, rather than nibbles, so the lastNibble variable stores a nibble than has not been output.
When another nibble is received, both lastNibble and the current nibble n can be written as a
single byte:

protected void putNibble(int nibble) {
        if (lastNibble == -1) {
            lastNibble = nibble;
        } else {
            outStream.write((lastNibble << 4) + nibble);
            lastNibble = -1;
        }
    }
}

Decoding is similar to encoding.  For convenience, the decoding methods belong to the same
class; they use a ByteArrayInputStream to retrieve data.  The decodeString method reads
a character at a time and appends it to the output:

    protected ByteArrayInputStream inStream;

    protected String decodeString(byte [] inBuffer) {
        inStream = new ByteArrayInputStream(inBuffer);
        StringBuffer outString = new StringBuffer();
        lastNibble = -1;
        int charRead;
        while ((charRead = decodeChar()) != -1) {
            outString.append( (char)charRead );
        }
        return outString.toString();
    }

The decodeChar method reads as many input nibbles as are required to compose a single
character.

    protected int decodeChar() {
        int s = getNibble();
        if (s == -1) return -1;
        if (s != NibbleEscape) {
            return NibbleChars.charAt(s);
        } else {
            s = getNibble();
            if (s == -1) return -1;
            return (s << 4) + getNibble(); }
    }

Method getNibble actually returns one nibble from the input stream, again keeping the extra
nibble in the lastNibble field when a full byte is read by only one nibble returned.
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    protected int decodeChar() {
        int nibble = getNibble();
        if (nibble == -1) {
            return -1;
        }
        if (nibble != NibbleEscape) {
            return NibbleChars.charAt(nibble);
        } else {
            nibble = getNibble();
            if (nibble == -1) {
                return -1;
            }
            return (nibble << 4) + getNibble();
        }
    }

Nibble encoding can be surprisingly effective.  For example a text-only version of this chapter
compresses to just 5.4 bits per char (67%) using this technique.  Similarly, the complete set of
text resources for a release of the EPOC32 operating system would compress to 5.7 bits per
character (though as the total space occupied by the strings is only 44 Kb, the effort and extra
code required have so far not been worthwhile).

v v v

Known Uses
Reuters worldwide IDN network uses Huffman encoding to reduce the bandwidth required to
transmit all the world’s financial market prices worldwide.  The IDN Huffman code table is
reproduced and re-implemented in many different systems.

GZIP uses Huffman encoding as part of the compression process, though their main
compression gains are from ADAPTIVE COMPRESSION. [Deutsch 1996]

The MNP5 and V42.bis modem compression protocols uses Huffman Encoding to get
compression ratios of 75% to 50% on typical transmitted data [Held 1994].

Nibble codes were widely used in versions of text adventure games for small machines [Blank
and Galley 1980]. Philip Gage used a similar technique to compress an entire string table [Gage
97]. Symbian’s EPOC16 operating system for the Series 3 used table compression for its
RESOURCE FILES [Edwards 1997].

Variants of UTF8 encoding are used in Java, Plan/9, and Windows NT to store Unicode
characters [Unicode 1996, Lindholm and Yellin 1999, Pike and Thompson 1993].

See Also
Many variants of table compression are also ADAPTIVE, calculating the optimal table for each
large section of data and including the table with the compressed data.

Compressed strings can be stored in RESOURCE FILES in SECONDARY STORAGE or READ-ONLY

MEMORY, as well as primary storage. Information stored in DATA FILES can also be compressed.

Witten, Moffat, and Bell [1999] and Cyganski, Orr, and Vaz [1998] discuss Huffman Encoding
and other forms of table compression in much more detail than we can give here.  Witten,
Moffat and Bell also includes discussions of memory and time costs for each technique.

Business Data Communications and Networking [Fitzgerald and Dennis 1995] provides a good
overview of modem communications.  Sharon Tabor’s course materials for ‘Data
Transmission’ [2000] provide a good terse summary.  The ‘Ultimate Modem Handbook’
includes an outline of various modem compression standards [Lewart 1999].

 ______________________________
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Difference Coding Pattern
Also know as: Delta Coding, Run Length Encoding

How can you reduce the memory used by sequences of data?

• You need to reduce your program’s memory requirements

• You have large streams of data in your program

• The data streams which will be accessed sequentially

• There are significant time or financial costs of storing or transferring data.

Many programs use sequences or series of data —  for example, sequential data such as audio
files or animations, time series such as stock market prices, values read by a sensor, or simply
the sequence of bytes making up program code. All these sequences increase the program’s
memory requirements, or worsen the transmission time using a telecommunications link.

Typically this sort of streamed data is accessed sequentially, beginning at the first item and then
processing each item in turn.  Programs rarely or never require random access into the middle of
the data.  Although storing the data is important, it often isn’t the largest problem you have to
face —  gathering the data is often much more work than simply storing it.  Typically, you don’t
want to devote too much programmer effort, processing time, or temporary memory to the
compression operations.

For example, the Strap-It-On PC needs to store results collected from the Snoop-Tronic series
of body wellbeing monitors.  These monitors are attached onto strategic points on the wearer’s
body, and regularly measure and record various physiological, psychological, psychiatric and
psychotronic metrics (heartbeats, blood-sugar levels, alpha-waves, influences from the planet
Gorkon, etc).  This information needs to be stored in the background while the Strap-It-On is
doing other work, so the recording process cannot require much processor time or memory
space.  The recording is continuous, gathering data whenever the Strap-It-On PC and Snoop-
Tronic sensors are worn and the wearer is alive, so large amounts of data are recorded.
Somehow, we must reduce the memory requirements of this data.

Therefore: represent sequences according to the differences between each item.

Continuous data sequences are rarely truly random —  the recent past is often an excellent guide
to the near future.  So in many sequences:

• The values don’t change very much between adjacent items, and
• There are ‘runs’, where is no change for several elements.

These features result in two complementary techniques to reduce the number of bits stored per
item:

• Delta Coding stores just differences between each successive item.
• Run-length Encoding (RLE) replaces a run of identical elements with a repeat count.

For example, in the data stored by the Snoop-Tronic monitors, the values read are very close or
the same for long periods of time.  The Strap-It-On PCs driver for the Snoop-Tronic sensors
uses sequence coding on the data streams as they arrive from each sensor, buffers the data, and
stores it to secondary storage —  without imposing a noticeable overhead on the performance of
the system.
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Consequences
Difference compression can achieve an excellent compression ratio for many kinds of data
(particularly cartoon-style picture data and some forms of sound data) reducing the program’s
memory requirements.  Sequential operations on the compressed data can execute almost as
fast as operations on native values preserving time performance and real-time responsiveness,
and considerably improving time performance if there are slow disk or telecommunication links
involved.

Difference compression is quite easy to implement, so it does not take much programmer effort,
or extra temporary memory.

However:  The compressed sequences are more to difficult to manage than sequences of absolute data
values.  In particular, it is difficult to provide random access into the middle of compressed
sequences without first uncompressing them, requiring temporary memory and processing time.

Some kinds of data – such as hi-fi sound or photographic images – don’t reduce significantly
with DIFFERENCE COMPRESSION.

You have to test the compressed sequence operations, but these tests are quite straightforward.

v v v

Implementation
Here are several difference coding techniques that you can consider:

1.  Delta Coding

Delta coding (or difference coding) stores differences between adjacent items, rather than the
absolute values of the items themselves [Bell et all 1990].  Delta coding saves memory space
because deltas can often be stored in smaller amounts of memory than absolute values. For
example, you may be able to encode a slowly varying stream of sixteen bit values using only
eight-bit delta codes.

Of course, the range of values stored in the delta code is less than the range of the absolute item
values (16-bit items range from 0 to 65536, while 8 bit deltas give you +- 127).  If the
difference to be stored is larger than the range of delta codes, typically the encoder uses an
escape code (a special delta value, say –128 for an 8-bit code) followed by the full absolute
value of the data item.

Figure xx below shows such a sequence represented using delta coding.  All values are in
decimal, and the escape code is represented as ‘? ’:

Delta coding

2048 2059 2048 1848 1848 2049 2150 2150 2150 2150 2150 2150 2151
Uncompressed sequence

Compressed representation
n 8 0 11 -11 n 7 56 0 n 8 1 101 0 0 0 0 0 1

All values in decimal. n = escape code

Figure 5: Delta Coding
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2.  Run Length Encoding

Run-length encoding compresses a run of duplicated items by storing the value of the duplicated
items once, followed by the length of the run [Bell et all 1990].  For example, we can extend the
delta code above to compress runs by always following the escape code by a count byte as well
as the absolute value.  Runs of between 4 and 256 items can be compressed as the escape code,
the absolute value of the repeated item, and the count.  Runs of longer than 256 items can be
stored as repeated runs of 256 characters, plus one more run of the remainder.  Figure XX
shows RLE added to the previous example:

Run length encoding

2048 2059 2048 1848 1848 2049 2150 21512150 2150 2150 2150 2150
Uncompressed sequence

Compressed representation
n 8 0 1 11 -11 n 7 56 1 0 n 1 8 1 101 n 1 8 102 5 1

All values in decimal. n = escape code

Figure 6: Run Length Encoding and Delta Coding

3. Lossy Difference Compression

Here are some common techniques that increase the compression ratio of sequence compression
by losing some of the information compressed:

1. You can treat a sequence with only negligible differences in values as if they were a run of
items with identical values.  For example, in the data series above, differences within a
quarter of a percent of the absolute value of the data items may not be significant in the
analysis.  Quite possibly they could be due to noise in the recording sensor or the ambient
temperature when the data item was recorded. A quarter of one percent of 2000 is 20 —  so
we can code the first three items as a run.

2. You can handle large jumps in delta values by allowing a lag in catching up.  Thus, for
example, the difference of 200 between 2048 to 1848 can be represented as two deltas,
rather than an escape code.

Using these two techniques, we can code the example sequence as shown in figure XX:

1848 1848   2049    2150    2150    2150    2150    2150    2150    2151
Uncompressed sequence

Compressed representation

2048 2059 2048

n 8 0 3 -127 -73 n 1 8 101 8

All values in decimal. n = escape code

Figure 7: Lossy Sequence Compression
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3. You can increase the granularity of the delta values, so that each delta value is scaled by the
magnitude of the items they are representing.  So, for example, each delta step could be the
nearest integer below 0.25% of the previous item’s value, allowing much larger deltas.

4.  Resynchronisation

Sequence compression algorithms are often used for broadcast communications and serial or
network connections.  In many cases, particularly with multimedia data streams, it doesn’t
matter very much if part of the sequence is lost or corrupted, so long as later data can be read
correctly.  Because difference codes assume the receiver knows the correct value for the last
item (so that the next item can be computed by adding the difference), one wrong delta means
that every subsequent delta will produce the wrong value.  To avoid this problem, you can
include resynchronisation information; every now and again you can send a complete value as
escape code, instead of a delta. The escape code resets the value of the current item, correcting
any accumulated error due to corruption or lost data.

5.  Non-numeric data

Difference Coding can also be very effective at compressing non-numeric data structures.  In
Delta Coding, the deltas will be structures themselves; for RLE represents events where the
structures haven’t changed.   For example, you can think some forms of the Observer pattern
[Gamma et al 1995] as examples of delta compression: the observer is told only the changes
that have happened.

Similarly you can do run-length encoding using a count of a number of identical structures.  For
example the X Window System can return a single compressed mouse movement event that
represents a number of smaller movements —  the compressed event contains a count of the
number of uncompressed movements it represents [Scheifler and Gettys 1986].

Examples
The following Java example compresses a sequence of two-byte values into a sequence of bytes
using both difference compression and run length encoding.   The compression is lossless, and
the only escape sequence contains both the complete value and the sequence length.  As above,
the bytes of the escape sequence are:

<escape> <high byte of repeated value> <low byte> <sequence count>

The encodeSequence method takes a sequence of shorts, and passes each one to the
encodeShort method, which will actually encode them:

    protected final int SequenceEscape =  0xff;
    protected final int MaxSequenceLength =  0xFE;
    protected short lastShort;
    protected short runLength;

    protected void encodeSequence(short[] inputSequence) {
        lastShort = 0;
        runLength = 0;

        for (int i = 0; i < inputSequence.length; i++) {
            encodeShort(inputSequence[i]);
        }
        flushSequence();

    }

The encodeShort method does most of the work.  It first checks if its argument is part of a
sequence of identical values, and if so, simply increases the run length count for the sequence —
if the sequence is now the maximum length that can be represented, an escape code is written.
If its argument is within the range of the delta coding (± 128 from the last value) an escape code
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is written if necessary, and a delta code is written.  Finally, if the argument is outside the range,
an escape code is written to terminate the current run length encoded sequence if necessary. In
any event, the current argument is remembered in the lastShort variable.

protected void encodeShort(short s) {
        if (s == lastShort) {
            runLength++;
            if (runLength >= MaxSequenceLength) {
                flushSequence();
            }
        } else if (Math.abs(s - lastShort) < 128 ) {
            flushSequence();
            writeEncodedByte(s - lastShort + 128);
        } else {
            flushSequence();
            runLength++;
        }
        lastShort = s;
}

The flushSequence method simply writes out the escape codes, if required, and resets the run
length.  It is called whenever a sequence may need to be written out —  whenever encodeShort
detects the end of the current sequence, or that the current sequence the longest that can be
represented by the run length escape code.

    protected void flushSequence() {
        if (runLength == 0) return;
        writeEncodedByte(SequenceEscape);
        writeEncodedByte(lastShort >>> 8);
        writeEncodedByte(lastShort & 0xff);
        writeEncodedByte(runLength);
        runLength = 0;
}

The corresponding decoding functions are straightforward. If an escape code is read, a run of
output values is written, and if a delta code is read, a single output is written which differs from
the last output value by the delta.

protected void decodeSequence(byte[] inBuffer) {
        ByteArrayInputStream inStream =
            new ByteArrayInputStream(inBuffer);
        lastShort = 0;
        int byteRead;

        while ((byteRead = inStream.read()) != -1) {
            byteRead = byteRead & 0xff;

            if (byteRead == SequenceEscape) {
                lastShort = (short) (((inStream.read() &0xff ) << 8) +
                                     (inStream.read() & 0xff));
                for (int c = inStream.read(); c > 0; c--) {
                    writeDecodedShort(lastShort);
                }
            } else {
                writeDecodedShort(lastShort += byteRead -128);
            }
        }
    }

v v v

Known Uses
Many image compression techniques use Different Compression.  The TIFF image file format
uses RLE to encode runs of identical pixels [Adobe 1992. The GIF and PNG formats do the
same after (lossy) colour mapping [CompuServe 1987, Boutell 1996].  The Group 3 and 4 Fax
transmission protocols uses RLE to encode the pixels on a line  [Gonzalez and Woods 1992];
the next line (in fine mode) or three lines (in standard mode) are encoded as differences from the
first line.
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MPEG video compression uses a variety of techniques to express each picture as a set of
differences from the previous one [MPEG, Kinnear 1999]. The V.42bis modem compression
standard includes RLE and TABLE COMPRESSION (Huffman Coding), achieving a total
compression ratio of up to 33% [Held 1994].

Many window systems in addition to X use Run Length encoding to compress events.  For
example MS Windows represents multiple mouse movements and key auto-repeats in this way,
and EPOC’s Window Server does the same [Petzold 1998, Symbian 1999].

Reuters IDN system broadcasts the financial prices from virtually every financial exchange and
bank in the world, aiming – and almost always succeeding – in transmitting every update to
every interested subscriber in under a second.  To make this possible, IDN represents each
‘instrument’ as a logical data structure identified by a unique name (Reuters Identification
Code); when the contents of the instrument (prices, trading volume etc.) change, IDN transmits
only the changes.  To save expensive satellite bandwidth further, these changes are transmitted
in binary form using Huffman Coding (see TABLE COMPRESSION), and to ensure synchronisation
of all the Reuters systems worldwide, the system also transmits a  background ‘refresh’ stream
of the complete state of every instrument.

See Also
You may want to use TABLE COMPRESSION in addition to, or instead of DIFFERENCE CODING.  If
you have a large amount of data, you may be able to tailor your compression parameters
(ADAPTIVE COMPRESSION), or to use a more powerful ADAPTIVE algorithm.

The references discussed in the previous patterns are equally helpful on the subject of
DIFFERENCE COMPRESSION.  Witten, Moffat and Bell [1999] explain image compression
techniques and tradeoffs; Cyganski, Orr, and Vaz [1998] and Solari [1997] explain audio,
graphical and video compression techniques, and Held [1994] discusses modem compression.

______________________________
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Adaptive Compression Pattern
How can you reduce the memory needed to store a large amount of bulk data?

• You have a large amount of data to store, transmit or receive.

• You don’t have enough persistent memory space to store the information long term, or
you need to communicate the data across a slow telecommunications link

• You have transient memory space for processing the data.

• You don’t need random access to the data

A high proportion of the memory requirements of many programs is devoted to bulk data.  For
example, the latest application planned for the Strap-It-On PC is ThemePark:UK, a tourist
guide being produce in conjunction with the Unfriendly Asteroid travel consultancy.
ThemePark:UK is based on existing ThemePark products, which guide users around theme
parks in Southern California.  ThemePark:UK will treat the whole of the UK as a single theme
park; the Strap-It-On will use its Global Positioning System together an internal database to
present interactive travel guides containing videos, music, voice-overs, and genuine people
personalities for cute interactive cartoon characters.  Unfortunately the UK is a little larger than
most theme parks, and the designers have found that using TABLE COMPRESSION and
DIFFERENCE COMPRESSION together cannot cram enough information into the Strap-It-On’s
memory.

This kind of problem is common in applications requiring very large amounts of data, whether
collections of documents and emails or representations of books and multimedia Even if systems
have sufficient main memory to be able to process or display the parts of the data they need at
any given time, they may not have enough memory to store all the information they will ever
need, either in main memory or secondary storage.

Therefore: Use an adaptive compression algorithm.

Adaptive compression algorithms can analyse the data they are compressing and modify their
behaviour accordingly.  These adaptive compression algorithms can provide high compression
ratios, and work in several ways:

• Many compression mechanisms require parameters, such as the table required for table
compression or the parameters to decide what data to discard with lossy forms of
compression.  An adaptive algorithm can analyse the data it’s about to compress, choose
parameters accordingly, and store the parameters at the start of the compressed data.

• Other adaptive techniques adjust their parameters on the fly, according to the data
compressed so far.  For example Move-to-front (or MTF) transformations change the table
used in, say Nibble Compression, so that the table of codes translating to the minimum (4-
bit) representation is always the set of most recently seen characters.

• Further techniques, predominantly the Lempel-Ziv family of algorithms, use the stream of
data already encoded as a string table to provide a compact encoding for each string newly
received.

Implementations of many adaptive compression algorithms are available publicly, either as free
or open source software, or from commercial providers.

For example, ThemePark:UK uses the gzip adaptive file compression algorithm for its text
pages, which achieves typical compressions of 2.5 bits per character for English text, and
requires fairly small amounts of RAM memory for decoding.  ThemePark:UK also uses JPEG
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compression for its images, PNG compression for its maps and cartoons, and MP3 compression
for sounds.

Consequences
Modern adaptive compression algorithms provide excellent compression ratios, reducing your
memory requirements.  They are widely used and are incorporated into popular industry
standards for bulk data.

Adaptive compression can also reduce data transmission times for telecommunication. File
compression can also reduce the secondary storage requirements or data transmission times
for program code.

However: File compression can require a significant processing time to compress and decompress large
bulk data sets, and so they are generally unsuitable for real-time work.  Some temporary
memory (primary and secondary storage) will be necessary to store the decompressed results
and to hold intermediate structures.

The performance of compression algorithms can vary depending on the type of data being
compressed, so you have to select your algorithm carefully, requiring programmer effort.  If
you cannot reuse an existing implementation you will need significant further programmer
effort to code up one of these algorithms, because they can be quite complex.  Some of the most
important algorithms are patented, although you may able to use non-patented alternatives.

v v v

Implementation
Designing efficient and effective adaptive compression algorithms is a very specialised task,
especially as the compression algorithms must be tailored to the type of data being compressed.
For most practical uses, however, you do not need to design you own text compression
algorithms, as libraries of compression algorithms are available both commercially and under
various open source licences.  Sun’s Java, for example, now officially includes a version of the
zlib compression library, implementing the same compression algorithm as the pkzip and gzip
compression utilities.  In most programs, compressing and decompressing files or blocks of data
is as simple as calling the appropriate routine from one of these libraries.

1.  LZ Compression

Many of the most effective compression schemes are variants of a technique devised by Zip and
Lempel [1977].  Lempel-Ziv (LZ77) compression uses the data already encoded as a table to
allow a compact representation of following data.  LZ compression is easy to implement; and
decoding is fast and requires little extra temporary memory.

LZ77 works by encoding sequences of tuples.  In each tuple, the first two items reference a
string previously coded – as an offset from the current position, and a length.  The third item is
a single character.  If there’s no suitable string previously coded, the first two items are zero.
For example, the following shows the LZ77 encoding of the song chorus “do do ron ron ron do
do ron ron”.
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d o • do•r on •ron•ron• do•do•ron•ron
Uncompressed sequence

Compressed representation
0 0 d 0 0 o 0 0 • 3 3 r 3 1 n 4 8 • 18 13  .

• = space character.

Figure 8: LZ77 Compression

Note how the repeating sequence “ ron ron” is encoded as a single tuple; this works fine for
decompression and requires only a small amount of extra effort in the compression code.

There are many variants of LZ compression, adding other forms of compression to the output,
or tailored for fast or low-memory compression or decompression.  For example GZIP encodes
blocks of 64Kb at a time, and uses Huffman Coding to compress the offset and length fields of
each tuple still further.

Examples
We examine two examples of adaptive compression.  The first, MTF compression, is a simple
adaptive extension of Table Compression.  The second, more typical of real-world applications,
simply uses a library to do compression and decompression for us.

1.  MTF Compression

Move-To-Front (MTF) compression can adapt Nibble Compression to the data being encoded,
by changing the compression table dynamically so that it always contains the 15 most recently
used characters [Bell et al 1990].   The following code shows only the significant changes from
the Nibble Coding example in TABLE COMPRESSION.

First, we need a modifiable version of the table.   As with the fixed version, it can be a simple
string.

protected String NibbleChars = " etoasrinclmhdu";

To start off, we set the table to be a best guess,  so both the encodeString and decodeString
methods start by resetting currentChars to the value NibbleChars (not shown here).  Then
we simply need to modify the table after encoding each character, by calling the new method
updateCurrent in encodeChar:

protected void encodeChar(int charCode) {
        int possibleNibble = NibbleChars.indexOf(charCode);
        if (possibleNibble != -1) {
            putNibble(possibleNibble);
        } else {
            putNibble(NibbleEscape);
            putNibble(charCode >>> 4);
            putNibble(charCode & 0xf);
        }
        updateCurrent((char) charCode);
    }

The updateCurrent method updates the current table, either by moving the current character
to the front of the table.  If that character is already in the table, it gets pushed to the front; if
not, then the last (least recently used) character is discarded:
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protected void updateCurrent(int c)
    {
        int position = NibbleChars.indexOf(c);
        if (position != -1) {
            NibbleChars = "" + c + NibbleChars.substring(0, position) +
                NibbleChars.substring(position+1);
        } else {
            position = NibbleChars.length() - 1;
            NibbleChars = "" + c + NibbleChars.substring(0, position);
        }
    }

The decodeChar needs to do the same update for each character decoded:
    protected int decodeChar() {
        int result;
        int nibble = getNibble();
        if (nibble == -1) {
            return -1;
        }
        if (nibble != NibbleEscape) {
            result = NibbleChars.charAt(nibble);
        } else {
            nibble = getNibble();
            if (nibble == -1) {
                return -1;
            }
            result = (nibble << 4) + getNibble();
        }
        updateCurrent(result);
        return result;
    }

This example doesn’t achieve as much compression as the fixed table for typical English text;
for the text of this chapter it achieves only 6.2 bits per character.  The MTF version does
achieve some degree of compression on almost any non-random form of text, however,
including executable binaries.

2.  ZLIB Compression

This example uses an existing compression library, and so is more typical of real-world
applications of adaptive compression.  The Java Zlib libraries provide compressing streams that
are DECORATORS of existing streams [Gamma et al 1995, Chan, Lee and Kramer 1998].  This
makes it easy to compress any data that can be implemented as a stream.  To compress some
data, we open a stream on that data, and pass it through a compressing stream and then to an
output stream.

protected static byte[] encodeSequence(byte[] inputSequence)
            throws IOException {
        InputStream inputStream = new ByteArrayInputStream(inputSequence);
        ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
        GZIPOutputStream out = new GZIPOutputStream(outputStream);

        byte[] buf = new byte[1024];
        int len;
        while ((len = inputStream.read(buf)) > 0) {
            out.write(buf, 0, len);
        }
        out.close();
        return outputStream.toByteArray();
    }

In this model, decompressing is much like compressing.  This time, the compressing stream is
on the reading side; but in all other respects the code is virtually the same.
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protected static byte [] decodeSequence(byte [] s) throws IOException {
        GZIPInputStream inputStream =
            new GZIPInputStream(new ByteArrayInputStream(s));
        ByteArrayOutputStream outputStream =
            new ByteArrayOutputStream();

        byte[] buf = new byte[1024];
        int len;
        while ((len = inputStream.read(buf)) > 0) {
            outputStream.write(buf, 0, len);
        }
        outputStream.close();
        return outputStream.toByteArray();
}

v v v

Known Uses
Lempel-Ziv and variant compression algorithms are an industry standard, evidenced by the
many PKZip and gzip file compression utilities used to reduce the size of email attachments, or
to archive little-used or old versions of files and directories [Ziv and Lempel 1977, Deutsch
1996].

The PDF format for device-independent images uses LZ compression to reduce its file sizes
[Adobe 1999] .  Each PDF file contains one or more streams, each of which may be compressed
with LZ.

File compression is also used architecturally in many systems. Linux kernels can be stored
compressed and are decompressed when the system boots, and Windows NT supports optional
file compression for each disk volume [Ward 1999, Microsoft NT 1996].  Java’s JAR format
uses gzip compression [Chan et al 1998] although designing alternative class file formats
specially to be compressed can give two to five times better compression than gzip applied to
the standard class file format [Horspool and Corless 1998, Pugh 1999]. Some backup tape
formats use compression, notably the Zip and Jaz drives, and the HTTP protocol allows any
web server to compress data, though as far as we are aware this feature is little used [Fielding
1999].

The current state-of-the-art library for adaptive file compression, Bzip2, achieves typical
compressions of 2.3 bits per character on English text by transforming the text data before
using LZ compression [Burroughs Wheeler 1994].  BZip2 requires a couple of Mbytes of RAM
to compress effectively.  See Witten et al [1999] and BZip2’s home page [BZip2] for more
detail.

See Also
TABLE COMPRESSION and DIFFERENCE CODING are often used with, or as part of, adaptive
compression algorithms.  You may also need to read a file a bit at a time (DATA FILES) to
compress it.

Text Compression  [Bell et al 1990] and Managing Gigabytes [Witten et al 1999] describe and
analyse many forms of adaptive compression, including LZ compression, arithmetic coding and
many others.

 ______________________________
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 Small Data Structures
Version 13/06/00 02:15 - 33 by Charles Weir

How can you reduce the memory needed for your data?

• The memory requirements of the data exceed the memory available to the system.

• You want to increase usability by allowing users to store as much of their data as
possible.

• You need to be able to predict the program’s use of memory.

• You cannot delete some of the data from the program.

The fundamental difference between code and data is that programmers care about code while
users care about data.  Programmers have some direct control over the size of their code (after
all, they write it!), but the data size is often completely out of the programmers’ control.
Indeed, given that a system is supposed to store users’ data, any memory allocated to code,
buffers, or other housekeeping is really overhead as far as the user is concerned.  Often the
amount of memory available to users can make or break a systems usability —  a word
processor which can store a hundred thousand word document is much more useful than one
which are only store a hundred words.

Data structures that are appropriate where memory is unrestricted may be far too prodigal
where memory is limited.  For example, a typical implementation of an address database might
store copies of information in indexes as well as the actual data, effectively storing everything
in the database twice.  Porting such an approach to the Strap-It-On wrist-top PC would halve
the number of addresses that could be stored in the database.

Techniques like COMPRESSION and using SECONDARY STORAGE can reduce a program’s main
memory requirements, but both have significant liabilities when used to manage the data a
program needs to work on.  Many kinds of compressed data cannot be accessed randomly; if
random access is required the data must be uncompressed first, costing time, and requiring a
large amount of buffer memory for the uncompressed data. Data stored on secondary storage is
similarly inaccessible, and needs to be copied into main memory buffers before it can be
accessed.

Therefore: Choose the smallest structure that supports the operations you need.

For any given data set there are many different possible data structures that might support it.
Suppose, for example, you need an unordered collection of object references with no duplicates
– in mathematical terms, a set.  You could implement it using a linear array of pointers, using a
hash table, or using a variety of tree structures.  Most class libraries will provide several
different implementations of such collections; the best one to choose depends on your
requirements.   Where memory is limited, therefore, you must be particularly careful to choose
a structure to minimise the program’s memory requirements.

You can think of data structure design as a three-stage process.  First analyse the program’s
requirements to determine the information the program needs to store; unnecessary information
requires no memory!

Second, analyse the characteristics of the data; what’s its total volume; how does it vary over a
single program run and across different runs; and what’s its granularity – does it consist of a
few large objects or many small objects?  You can also analyse the way you’ll access the data:
whether it is read and written, or only ever read; whether it is accessed sequentially or
randomly; whether elements are inserted into the middle of the data or only added at the end.
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Third, choose the data structures.  Consider as many different possibilities as you can – your
standard class libraries will provide some basic building blocks, but consider also options like
embedding objects (FIXED ALLOCATION), EMBEDDING POINTERS, or PACKING the DATA.  For each
candidate data structure design, work out the amount of memory it will require to store the data
you need, and check that it can support all the operations you need to perform. Then consider
the benefits and disadvantages of each design: for example a smaller data structure may require
more processing time to access, provide insufficient flexibility or give insufficient real-time
performance.  You’ll need also to evaluate the resulting memory requirements for each
possibility against the total amount of memory available – in some cases you may need to do
simple trials using scratch code.  If none of the solutions are satisfactory you may need to go
back and reconsider your earlier analysis, or even the requirements of the system as a whole.
On the other hand there’s no need to optimise memory use beyond your given requirements (see
the THRESHOLD SWITCH pattern [Auer and Beck 1996]).

For example, the Strap-It-OnTM address program has enough memory to store the address
records but not indexes.  So its version of the address program uses a sorted data structure that
does not need extra space for an index but that is slower to access than the indexed version.

Consequences
Choosing suitable data structures can reduce a program’s memory requirements, and the time
spent can increase the quality of the program’s design.

By increasing the amount of users’ information the program can store, careful data structure
design can increase a program’s usability.

However: analysing a program’s requirements and optimising data structure design takes programmer
discipline to do, and programmer effort and time to do well.

Optimising data structure designs to suit limited memory situations can restrict a program’s
scalability should more memory become available.

The predictability of the program’s memory use, the testing costs, and the program’s time
performance may or may not be affected, depending upon the chosen structures.

v v v

Implementation

Every data structure design for any program must trade off several fundamental forces:
memory requirements, time performance, and programmer effort being the most important.
Designing data structures for a system with tight memory constraints is no different in theory
from designing data structures in other environments, but the practical tradeoffs can result in
different solutions.  Typically you are prepared to sacrifice time performance and put in more
programmer effort than in an unconstrained system, in order to reduce the memory
requirements of the data structure.

There are several particular issues to consider when designing data structures to minimise
memory use:

1. Predictability versus Exhaustion

The predictability of a data structure’s memory use, and ultimately of the whole program can
be as important as the structure’s overall memory requirements, because making memory use
more predictable makes it easier to manage. Predictability is closely related to the need to deal
with memory exhaustion: if you can predict the program’s maximum memory use in advance
then you can use FIXED ALLOCATION to ensure the program will never run out of memory.
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2. Space versus Flexibility

Simple, static, inflexible data structures usually require less memory than more complex,
dynamic, and flexibly data structures. For example, you can implement a one-to-one
relationship with a single pointer or even an inline object (see FIXED  ALLOCATION), while a one-
to-many relationship will require collection classes, arrays, or EMBEDDED POINTERS. Similarly,
flexible collection classes require more memory than simple fixed sized arrays, and objects
with methods or virtual functions require more memory than simple records (C++ structs)
without them.  If you don’t need flexibility, don’t pay for it; use simple data structures that
need less memory.

3. Calculate versus Store

Often you can reduce the amount of main memory you need by calculating information rather
than storing it.  Calculating information reduces a program’s time performance and can
increase its power consumption, but can also reduce its memory requirements.  For example,
rather than keeping an index into a data structure, you can traverse the whole data structure
using a linear search. Similarly, the PRESENTER pattern [Vlissides 1998] describes how
graphical displays can be redrawn from scratch rather than being updated incrementally using
a complex object structure.

v v v

Specialised Patterns
This chapter contains five specialised patterns that describe a range of techniques for designing
data structures to minimise memory requirements. The following figure shows the relationships
between the patterns.

Reference
Counting

Secondary
Storage Compression

Embedded
Pointer

Multiple
Representations

Fixed
Allocation

Garbage
Collection

Packed Data Sharing Copy on Write

Data Structures Memory
Allocation

Figure 1: Data Structure Pattern Relationships

PACKED DATA selects suitable internal representations of the data elements in an object, to
reduce its memory footprint.

SHARING removes redundant duplicated data.  Rather than using multiple copies of functions,
resources or data, the programmer can arrange to store only one copy, and use that
copy wherever it is needed.

COPY-ON-WRITE extends SHARING so that shared objects can be modified without affecting other
client objects that use the shared objects.
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EMBEDDED POINTERS reduce the memory requirements for collection data structures, by
eliminating auxiliary link objects and moving pointers into the data objects stored in
the structures.

MULTIPLE REPRESENTATIONS are effective when no single representation is simultaneously
compact enough for storage yet efficient enough for actual use.

Known Uses
Like Elvis, data structures are everywhere.

The classic example of designing data structures to save memory is the technique of allocating
only two BCD digits to record the year when storing dates [Yourdon 2000].  This had
unfortunate consequences, although not the disasters predicted in the lead-up to the millennium
[Berry, Buck, Mills, Stipe 1987].  Of course these data structure designs were often made for
the best of motives: in the 1960s disk and memory was much more expensive than it is today;
and allocating two extra characters per record could cost millions.

An object-oriented database built using Smalltalk needed to be scaled up to cope with millions
of objects, rather than several thousand.  Unfortunately, a back-of-the envelope calculation
showed that the existing design would require a ridiculous amount of disk space and thus
buffer memory. Examination of the database design showed that Smalltalk Dictionary (hash
table) objects occupied a large proportion of its memory; further investigation showed and that
these Dictionaries contained only two elements: a date and a time.  Redesigning the database to
use Smalltalk Timestamp objects that stored a date and time directly, rather than the dictionary,
reduced the number of objects needed to store each timestamp from at least eight to three, and
made the scaled-up database project feasible.

See also
Once you have designed your data structures, you then have to allocate the memory to store
them.  The MEMORY ALLOCATION chapter presents a series of patterns describing how you can
allocate memory in your programs.

In many cases, good data structure design alone is insufficient to manage your program’s
memory.  The COMPRESSION chapter describes how memory requirements can be reduced by
explicitly spending processor time to build very compact representations of data that generally
cannot be used directly in computations.  Moving less important data into SECONDARY STORAGE

and constant data into READ-ONLY MEMORY can reduce the demand for writable primary storage
further.

There are many good books describing data structure design in depth. Knuth [1997] remains a
classic, though its examples are, effectively, in assembly language. Hoare [1972] is another
seminal work, though nowadays difficult to find. Aho, Hopcroft and Ullman [1983] is a
standard text for university courses, with examples in a Pascal-style pseudo-code, Cormen et al
[1990] is a more in-depth Computer Science text, emphasising the mathematical analysis of
algorithms.  Finally Segewick’s series beginning with Algorithms [1988] provide a more
approachable treatment, with editions quoting source code in different languages – for example
Algorithms in C++: Fundamentals, Data Structures, Sorting, Searching, [Segewick 1999]
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Packed Data
Also known as: Bit Packing

How can you reduce the memory needed to store a data structure?

• You have a data structure (a collection of objects) that has significant memory
requirements.

• You need fast random access to every part of every object in the structure.

• You need to store the data in these objects in main memory.

No matter what else you do in your system, sooner or later you end up having to design the
low-level data structures to hold the information your program needs. In an object-oriented
language, you have to design some key classes whose objects store the basic data and provide
the fundamental operations on that data.  In a program of any size, although there may be only
a few key data storage classes, there can be a large number of instances of these classes.
Storing all these objects can require large amounts of memory, certainly much more than
storing the code to implement the classes.

For example, the Strap-It-On’s Insanity-Phone application needs to store all of the names and
numbers in an entire local telephone directory (200,000 personal subscribers).  All these names
and numbers should just about fit into the Strap-It-On’s memory, but would leave no room for
the program than displayed the directory, let alone any other program in the Wrist-Top PC.

Because these objects (or data structures) are the core of your program, they need to be easily
accessible as your program runs. In a program of any complexity, the objects will need to be
accessed randomly (rather than in any particular order) and then updated. Taken together,
random access with updating requires that the objects are stored in main memory.

You might consider using COMPRESSION on each object or on a set of objects, but this would
make processing slow and difficult, and makes random access to the objects using references
almost impossible. Similarly, moving objects into SECONDARY STORAGE is not feasible if the
objects need to be accessed rapidly and frequently.  Considering the Insanity-Phone example
again, the data cannot be placed in the Strap-It-On’s secondary memory because that would be
too slow to access; and the data cannot be compressed effectively while maintaining random
access because each record is too small to compressed individually using standard adaptive
compression algorithms.

Therefore: Pack data items within the structure so that they occupy the minimum space.

There are two ways to reduce the amount of memory occupied by an object:

1. Reduce the amount of memory required by each field.

2. Reduce the amount of unused memory allocated between fields.

Consider each individual field in turn, and consider how much information that field really
needs to store.  Then, chose the smallest possible representation for that information.  This may
be the smallest suitable language level-data type, or even smaller, using different bits within,
say, a machine word to encode different data items.

Once you have analysed each field, analyse the class as a whole to ensure that extra memory is
not allocated between fields.  Compilers or assemblers often ensure that fields are aligned to
take advantage of CPU instructions that make it easier to access aligned data, so, for example,
all two-byte fields be stored at even addresses, and all four-byte fields at addresses that are
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multiples of four. Aligning fields wastes the memory space between the end of one field and the
start of the next.

A

This is dead space and can't be used

The figure below shows how packing an object can almost halve the amount of memory that it
requires. The normal representation on the left allocates four bytes for each Boolean variable
(presumably to use faster CPU instructions) and aligns two and four-byte variables to two or
four-byte boundaries; the packed representation allocates only one byte for each Boolean
variable and dispenses with alignment for longer variables.
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Considering the Insanity-Phone again, the designers realised that local phone books never cover
more than 32 area codes – so each entry requires only 5 bits to store the area code.  A seven-
digit decimal number requires 24 bits.  Surnames are duplicated many times, so Insanity-Phone
stores each surname just once – an example of SHARING – and therefore gets less than 30,000
unique names in each book; this requires 18 bits.  Storing up to three initials (5 bits each – see
STRING COMPRESSION) costs a further 15 bits.  The total is 62 bits, and this can be stored in one
64 bit long integer for each entry.

Consequences
Each instance occupies less memory reducing the total memory requirements of the system,
even though the same amount of data can be stored, updated, and accessed randomly.
Choosing to pack one data structure is usually a local decision, with little global effects on the
program as a whole.

However:   The time performance of a system suffers, because CPUs are slower at accessing
unaligned data.  If accessing unaligned data requires many more instructions than aligned data,
it can impact the program’s power consumption.  More complicated packing schemes like bit
packing can have even higher overheads.

Packing data requires programmer effort to implement, produces less intuitive code which is
harder to maintain, especially if you use non-standard data representations.  More complicated
techniques can increase testing costs.

Packing schemes that rely on particular aspects of a machine’s architecture, such as word sizes
or pointer formats, will reduce portability.  If you’re using non-standard internal
representations, it is harder to exchange objects with other programs that expect standard
representations.

Finally, packing can reduce scalability, because it can be difficult to unpack data structures
throughout a system if more memory becomes available.

v v v
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Implementation
The default implementation of a basic type is usually chosen for time performance rather than
speed. For example, Boolean variables are often allocated as much space as integer variables,
even though they need only a single bit for their representation.  You can pack data by choosing
smaller data types for variables; for example, you can represent Booleans using single byte
integers or bit flags, and you may be able to replace full-size integers (32 or 64 bits) with 16 or
even 8-bit integers (C++’s short and char types).

Compilers tend to align data members on machine-word boundaries which wastes space (see
the figure on p.N above). Rearranging the order of the fields can minimise this padding, and
can reduce the overhead when accessing non-aligned fields.  A simple approach is to allocate
fields within words in decreasing order of size.

Because packing has significant overheads in speed and maintainability, it is not worthwhile
unless it will materially reduce the program’s memory requirements. So, pack only the data
structures that consume significant amounts of memory, rather than packing every class
indiscriminately.

Here are some other issues to consider when applying the PACKED DATA pattern.

1. Compiler and Language Support

Compilers, assemblers and some programming language definitions support packing directly.

Many compilers provide a compilation flag or directive that ensures all data structures use the
tightest alignment for each item, to avoid wasted memory at the cost of slower run-time
performance. Microsoft C++, the directive:

#pragma pack( n )

sets the packing alignment to be based on n-byte boundaries, so pack(1) gives the tightest
packing; the default packing 8 [Microsoft 1997]. G++ provides a pack attribute for individual
fields to ensure they are allocated directly after the preceding field [Stallman 1999].

2. Packing Objects into Basic Types

Objects can impose a large memory overhead, especially when they contain only a small
amount of data. Java objects impose an allocation overhead of at least one an additional
pointer, and C++ objects with virtual functions require a pointer to a virtual function table.
You can save memory by replacing objects by more primitive types (such as integers or
pointers), an example of MULTIPLE REPRESENTATIONS.

When you need to process the data, wrap each primitive type in a first-class object, and use the
object to process the data; when you’ve completed processing, discard the object, recover the
basic type, and store it once again.  To avoid allocating lots of wrapper objects, you can reuse
the same wrapper for each primitive data item.  The following Java code sketches how a
BigObject can be repeatedly initialised from an array of integers for processing. The become
method reinitialises a BigObject from its argument, and the process method does the work.

BigObject obj = new BigObject(0);

    for (int i=1; i<10; i++)
    {
        obj.become(bigarray[i]);
        obj.process();
    }

In C++, we can define operators to convert between objects and basic types, so that the two
can be used interchangeably:
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class BigIntegerObject
{
public:

BigIntegerObject( int anInt=0 ) : i( anInt ) {}
operator int() { return i; }

private:
int i;

};

int main()
{

BigIntegerObject i( 2 ), j( 3 );
BigIntegerObject k = i*j;  // Uses conversion operators

3. Packing Pointers using Tables

Packing pointers is more difficult, because they don’t obviously contain redundant data.  To
pack pointers you need to look at what they reference.

If a given pointer may point to only one of a given set of then it may be possible to replace the
pointer with an index into an array; often, an array of pointers to the original item.  Since the
size of the array is usually much less than the size of all the memory in the system, the number
of bits needed for an array index can be much less than the number of bits needed for a general
pointer.

index:
[0..arraySize]

0
1
2
3
4
5

etc.

Item

Item

Item

Item

Uses

Take, for example, the Insanity-phone application above.  Each entry apparently needs a
pointer to the corresponding surname string: 32 bits, say.   But if we implement an additional
array of pointers into the string table, then each entry need only store an index into this array
(16 bits). The additional index costs memory: 120Kb using 4-byte pointers.

If you know that each item is guaranteed to be within a specific area of memory, then you can
just store offsets within this memory.  This might happen if you’ve built a string table, or if
you’re using POOLED ALLOCATION, or VARIABLE ALLOCATION within a heap of known size.   For
example, if all the Insanity-Phone surname strings are stored in a contiguous table  (requiring
less than 200K with STRING COMPRESSION), the packed pointer needs only hold the offset from
the start of the table: 18 bits rather than 32.

4. Packing Pointers using Bitwise Operations

If you are prepared to sacrifice portability, and have an environment like C++ that allows you
to manipulate pointers as integers, then you have several possible ways to pack pointers.  In
some architectures, pointers contain redundant bits that you do not need to store. Long pointers
in the 8086 architecture had at least 8 redundant bits, for example, so could be stored in three
bytes rather than four.

You can further reduce the size of a pointer if you can use knowledge about the heap allocation
mechanism, especially about alignment.  Most memory managers allocate memory blocks
aligned on word boundaries; if this is an 8-byte boundary, for example, then you can know that
any pointer to a heap object will be a multiple of eight.  In this case, the lowest three bits of
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each pointer are redundant, and can be reused or not stored.   Many garbage collectors, for
example, pack tag information into the low bits of their pointers [Jones and Lins 1996].

Example
Consider the following simple C++ class:

class MessageHeader {
    bool  inUse;
    int   messageLength;
    char  priority;
    unsigned short channelNumber;
    bool  waitingToSend;
};

With 8-byte alignment, this occupies 16 bytes, using Microsoft C++ on Windows NT. With the
compiler packing option turned on it occupies just 9 bytes.  Note that the packed structure does
not align the integer i1 to a four-byte boundary, so on some processors it will take longer to
load and store.

Even without compiler packing, we can still improve the memory use just by reordering the
data items within the structure to minimise the gaps.  If we sort the fields in decreasing order of
size

class ReorderedMessageHeader {
    int   messageLength;
    unsigned short channelNumber;
    char  priority;
    bool  inUse;
    bool  waitingToSend;
};

the class occupies just 12 bytes, a saving of four bytes.  If you’re using compiler field packing,
both MessageHeader and ReorderedMessageHeader occupy 9 bytes, but there’s still a
benefit to latter since it puts all the member items on the correct machine boundaries where
they can be manipulated fast.

We can optimise the structure even more using bitfields.  The following version contains the
same data as before:

class BitfieldMessageHeader {
    int      messageLength;
    unsigned channelNumber: 16;
    unsigned priority:      8;
    unsigned inUse:         1;
    unsigned waitingToSend: 1;

public:
    bool IsInUse() { return inUse; }
    void SetInUseFlag( bool isInUse ) { inUse = isInUse; }
    char Priority() { return priority; }
    void SetPriority( char newPriority ) { priority = newPriority; }
    // etc.
};

but occupies just 8 bytes, a further saving of four bytes – or one byte if you’re using compiler
packing.

Unfortunately compiler support for booleans in bitfields tends to be inefficient.  This problem
isn’t actually a sad reflection on the quality of C++ compiler writers today; the real reason is
that it requires a surprising amount of code to implement the semantics of, say, the setB1
function above.  We can improve performance significantly by using bitwise operations instead
of bitfields, and implement the member functions directly to expose these operations:
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class BitwiseMessageHeader {
    int      messageLength;
    unsigned short channelNumber;
    char priority;
    unsigned char flags;
public:
    enum FlagName { InUse = 0x01, WaitingToSend = 0x02 };
    bool GetFlag( FlagName f )   { return (flags & f) != 0; }
    void SetFlag( FlagName f )   { flags |= f;  }
    void ResetFlag( FlagName f ) { flags &= ~f;  }
};

This optimises performance, at the cost of exposing some of the implementation.

v v v

Known Uses
Packed data is ubiquitous in memory-limited systems.  For example virtually all Booleans in
the EPOC system are stored as bit flags packed into integers.  The Pascal language standard
includes a special PACKED data type qualifier, used to implement the original Pascal compiler.

To support dynamic binding, a C++ object normally requires a vtbl pointer to support virtual
functions [Stroustrup 1995, Stroupstrup 1997].  EPOC requires dynamic binding to support
Multiple Representations for its string classes, but a vtbl pointer would impose a four bytes
overhead on every string.  The EPOC string base class (TDesC) uses the top 4 bits of its ‘string
length’ data member to identify the class of each object:

class TDesC8 {  private:
unsigned int iLength:28;
unsigned int iType:4;
/* etc... */

Dynamically bound functions that depend on the actual string type are called from TDesC using
a switch statements on the value of the iType bitfield.

Bit array classes are available in both the C++ Standard Template Library and the Java
Standard Library.  Both implement arrays of bits using array of machine words.  Good
implementations of the C++ STL also provide a template specialisation to optimise the special
case of an array of Booleans by using a bitset [Stroustrup 1997, Chan et al 1998].

Java supports object wrapper versions for many primitive types (Integer, Float).  Programmers
typically use the basic types for storage and the object versions for complicated operations.
Unfortunately Java collections store objects, not basic types, so every basic type must be
wrapped before it is stored into a collection [Gosling, Joy, Steele 1996].  To avoid storing
multiple copies of the same information the Palm Spotless JVM carefully shares whatever
objects it can, such as constant strings defined in different class files [Taivalsaari et al 1999].

See Also
EMBEDDED POINTERS provides a way to limit the space overhead of collections and similar data
structures. FIXED ALLOCATION and POOLED ALLOCATION provide ways to reduce any additional
memory management overhead.

Packing string data often requires STRING COMPRESSION.

The VISITOR and PRESENTER [Vlissides 1996] patterns can provide behaviour for collections of
primitive types (bit arrays etc.) without having to make each basic data item into an object.
The FLYWEIGHT PATTERN [Gamma et al 1995] allows you to process each item of a collection of
packed data within the context of its neighbours.
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Sharing
Also Known As: Normalisation.

How can you avoid multiple copies of the same information?

• The same information is repeated multiple times.

• Very similar objects are used in different components.

• The same functions can be included in multiple libraries

• The same literal strings are repeated throughout a program.

• Every copy of the same information uses memory.

Sometimes the same information occurs many times throughout a program, increasing the
program’s memory requirements.  For example, the Strap-It-On user interface design includes
many icons showing the company’s bespectacled founder.  Every component displaying the
icon needs to have it available, but every copy of that particular gargoyle wastes memory.

Duplication can also enter the program from outside.  Data loaded from RESOURCE FILES or
from an external database must be recreated inside a program, so loading the same resource or
data twice (possibly in different parts of the program) will also result in two copies of the same
information.

Copying objects has several benefits. Architecturally, it is important that components take
responsibility for the objects they use, so copying objects between components can simplify
ownership relationships.  Some language constructs (such as C++ value semantics and
Smalltalk cloning) assume object copying; and sometimes copying objects to where they are
required can avoid indirection, making systems run faster.

Unwanted duplication doesn’t just affect data objects.  Unless care is taken, every time a
separately compiled or built component of the program uses a library routine, a copy of that
routine will be incorporated into the program. Similarly every time a component uses a string
or a constant a copy of that string may be made and stored somewhere.

Unfortunately, for whatever reason information is duplicated, every copy takes up memory that
could otherwise be put to better use.

Therefore:  Store the information once, and share it everywhere it is needed.

Analyse your program to determine which information is duplicated, and which information
can be safely shared. Any kind of information can be duplicated —  images, sounds, multimedia
resources, fonts, character tables, objects, and functions, as well as application data.

Once you have found common information, check that it can be shared.  In particular, ensure
that it never needs to be changed, or that all its clients can cope whenever it is changed.
Modify the information’s clients so that they all refer to a single shared copy of the
information, typically by accessing the information through a pointer rather than directly.

If the shared information can be discarded by its clients, you may need to use REFERENCE

COUNTING or GARBAGE COLLECTION so that it is only released once it is no longer needed
anywhere in the program.  If individual clients may want to change the data, you may need to
use COPY-ON-WRITE.

For example, the Strap-It-On PC really only needs one copy of Our Founder’s bitmap. This
bitmap is never modified, so a single in-memory copy of the bitmap is shared everywhere it is
needed in the system.
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Consequences
Judicious sharing can reduce a program’s memory requirements, because only one copy is
required of a shared object. SHARING also increases the quality of the design, since there’s less
chance of code duplication.  SHARING generally does not affect a program’s scalability when
more memory is made available to the system, nor its portability.  Since there’s no need to
allocate space for extra duplicate copies, SHARING can reduce start-up times, and to a lesser
extent run-time performance.

However: programmer effort and discipline, and team co-ordination is required to design programs to
take advantage of sharing.  Designing sharing also increases the complexity of the resulting
system, adding to maintenance and testing costs since shared objects create interactions
between otherwise independent components.

Although it does not affect the scalability of centralised systems, sharing can reduce the
scalability of distributed systems, since it can be more efficient to make one copy of each
shared object for each processor.

Sharing can introduce many kinds of aliasing problems, especially when read-only data is
changed accidentally [Hogg 1991, Noble et al 1998], and so can increase testing costs.  In
general, sharing imposes a global cost on programs to achieve local goals, as many
components may have to be modified to share a duplicated data structure.

v v v

Implementation
Sharing effectively changes one-to-one (or one-to-many) relationships into many-to-one (or
many-to-many) relationships.  Consider the example below, part of a simple word processor, in
UML notation [Fowler 1997]. A Document is made up of many Paragraphs, and each
Paragraph has a ParagraphFormat.

Document

Paragraph Paragraph
Format

*

1

1 1

Considering each class in turn, it is unlikely that Documents or Paragraphs will be duplicated,
unless, for example, many documents have many identical paragraphs. Yet many paragraphs
within a document will have the same format.  This design, however, gives each Paragraph
object has its own ParagraphFormat object.  This means that the program will contain many
ParagraphFormat objects (one for each Paragraph) whilst many of these objects will have
exactly the same contents.  ParagraphFormats are obvious candidates for sharing between
different Paragraphs.

We can show this sharing as a one-to-many relationship.
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Paragraph
Paragraph

Format* 1

Document

*

1

In the revised design, there will only be a few ParagraphFormat objects, each one different,
and many Paragraphs will share the same ParagraphFormat object.

The design activity of detecting repeated data and splitting it into a separate object is called
normalisation.  Normalisation is an essential part of relational database design theory, and
boasts an extensive literature [Connolly and Begg 1999; Date 1999; Elmasri and Navathe
2000].

You should consider the following other issues when applying the SHARING pattern.

1. Making Objects Shareable

Aliasing problems make it difficult to share objects in object-oriented programs [Hogg 1991,
Noble, Vitek, Potter 1998]. Aliasing problems are the side effects caused by changing a shared
object: if a shared object is changed by one of its clients the change will affect any other client
of the shared object, and such changes can cause errors in clients that do not expect them.  For
example, changing the font in a shared Paragraph Format object will change the fonts for all
Paragraphs that share that format. If the new font is, say, a printer-only font, and is changed to
suit one particular paragraph that will never be displayed on screen, it will break other
paragraphs using that format which do need to be displayed on screen, because a printer-only
font will not work for them.

The only kinds of objects that can be shared safely without side effects are immutable objects,
objects that can never be changed. The immutability applies to the object itself – it’s not
enough just to make some clients read-only, since other, writing, clients may still change the
shared object ‘behind their back’.  To share objects safely you typically have to change clients
so that they make new objects rather than changing existing ones (see COPY-ON-WRITE).  You
should consider removing any public methods or fields that can be used to change shared
objects’ state: in general, every field should only be initialised in the object’s constructor (in
Java, all fields should be final).  The FLYWEIGHT pattern [Gamma 1995] can be used to move
dynamic state out of shared objects and into their clients.

2. Establishing Sharing

For two or more components to be able to share some information, each component must be
able to find the information that is shared.

In small systems, where only a few distinguished objects are being shared, you can often use a
global variable to store each shared object, or store shared instances within the objects’ classes
using the SINGLETON pattern [Gamma 1995].  The shared global variables can be initialised
statically when the program starts, or the first time a shared objects is accessed using LAZY

INITIALISATION [Beck  1997].

To provide a more general mechanism you can implement a shared cache, an in-memory
database mapping from keys to shared objects.  To find a shared object, a component checks
the cache. If the shared object is already in the cache you use it directly; if not you create the
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object and store it back into the cache.  For this to work you need a unique key for each shared
object to identify it in the cache.  A shared cache works particularly well when several
components are loading the same objects from resource files databases, or networks like the
world wide web. Typical keys could be the fully qualified file names, web page URLs, or a
combination of database table and database key within that table – the same keys that identify
the data being loaded in the first place.

3. Deleting Shared Objects

Once you’ve created shared objects, you may need to be able to delete them when no longer
required.

There are three standard approaches to deleting shared objects: REFERENCE COUNTING, GARBAGE

COLLECTION and object ownership.  REFERENCE COUNTING keeps a count of the number of
objects interested in a shared object; when this becomes zero the object can be released (by
removing the reference from the cache and, in C++, deleting the object).  A GARBAGE

COLLECTOR can detect and remove shared objects without requiring reference counts.  Note that
if a shared object is accessed via a cache, the cache will always have a reference to the shared
object, preventing the garbage collector from deleting it, unless you can use some form of weak
reference [Jones and Lins 1996].

With object ownership, you can identify one other single object or component that has the
responsibility of managing the shared object (see the SMALL ARCHITECTURE pattern).  The
object’s owner accepts the responsibility of deleting the shared object at the appropriate time;
generally it needs to be an object with an overview of all the objects that ‘use’ the shared object
[Weir 1996, Cargill 1996].

4. Sharing Literals and Strings

In many programs literals occupy more space than variables, so you can assign often used
literals to variables and then replace the literals by the variables, effectively SHARING one literal
in many places.  For example, LaTeX uses this technique, coding common literals such as one,
two, and minus one as the macros ‘\@ne’, ‘\tw@’, and ‘\m@on’. Smalltalk shares literals as
part of the language environment, by representing strings as ‘symbols’.  A symbol represents a
single unique string, but can be stored internally as if it were an integer. The Smalltalk system
maintains a ‘symbol table’ that maps all known symbols to the strings they represent, and the
compilation and runtime system must search this table to encode each string as a symbol,
potentially adding a new entry if the string has not been presented before. The Smalltalk
environment uses symbols for all method names, which both compresses code and increases the
speed of method lookup.

5. Sharing across components and processes

It’s more difficult to implement sharing between several components in different address
spaces.  Most operating systems provide some kind of shared memory, but this is often difficult
to use. In concurrent systems, you need to prevent one thread from modifying shared data while
another thread is accessing it.  Typically this requires at least one semaphore, and increases
code complexity and testing cost.

Alternatively, especially when data is shared between many components, you can consider
encapsulating the shared data in a component of its own and use client-server techniques to
access it.  For example, EPOC accesses its relational databases through a single ‘database
server’ process.  This server keeps a cache of indexes for its open databases; if two
applications use the same database they share the same index.
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Example
This Java example outlines part of the simple word processor described above. Documents
contain Paragraphs, each of which has a ParagraphFormat.  ParagraphFormats are
complex objects, so to save memory several Paragraphs share a single ParagraphFormat.
The code shows two mechanisms to ensure this:

• When we duplicate a Paragraph, both the original and the new Paragraph share a
single ParagraphFormat instance.

• ParagraphFormats are referenced by name, like “bold”, “normal” or “heading 2”.  A
Singleton ParagraphFormatCatalog contains a map of all the names to
ParagraphFormat objects, so when we request a ParagraphFormat by name, the
result is the single, shared, instance with that name.

The most important class in the word processor is Document: basically a sequence of
Paragraphs, each of which as a (shared) ParagraphFormat.

class Document {
    Vector paragraphs = new Vector();
    int currentParagraph = -1;

The Paragraph class uses a StringBuffer to store the text of the paragraph, and also stores
a reference to a ParagraphFormat object.

class Paragraph implements Cloneable {
    ParagraphFormat format;
    StringBuffer text = new StringBuffer();

A new Paragraph can be constructed either by giving a reference to a format object (which is
then stored, without being copied, as the new Paragraph’s format) or by giving a format name,
which is then looked up in the ParagraphFormatCatalog.  Note that neither initialising or
accessing a paragraph’s format copies the ParagraphFormat object, rather it is passed by
reference.

Paragraph(ParagraphFormat format) {
        this.format = format;
    }

    Paragraph(String formatName) {
        this(ParagraphFormatCatalog.catalog().findFormat(formatName));
    }

    ParagraphFormat format() {return format;}

Paragraphs are copied using the clone method (used by the word-processor to implement its
cut-and-paste feature).  The clone method only copies one object, so the new clone’s fields
automatically point to exactly the same objects as the old object’s fields. We don’t want a
Paragraph and its clone to share the StringBuffer, so we must clone that explicitly and
install the cloned StringBuffer into the cloned Paragraph; however we don’t want to clone
the ParagraphFormat reference, because ParagraphFormats can be shared.

    public Object clone() {
        try {
            Paragraph myClone = (Paragraph) super.clone();
            myClone.text =  new StringBuffer(text.toString());
            return myClone;
        } catch (CloneNotSupportedException ex) {
            return null;
        }
    }

Paragraphs find their formats using the ParagraphFormatCatalog, The catalog is a
SINGLETON [Gamma et al 1995].



Sharing UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 16

class ParagraphFormatCatalog {
    private static ParagraphFormatCatalog systemWideCatalog
        = new ParagraphFormatCatalog();
    public static ParagraphFormatCatalog catalog() {
        return systemWideCatalog;
    }

that implements a map from format names to shared ParagraphFormat objects:
Hashtable theCatalog = new Hashtable();
    public void addNewNamedFormat(String name, ParagraphFormat format) {
        theCatalog.put(name,format);
    }

    public ParagraphFormat findFormat(String name) {
        return (ParagraphFormat) theCatalog.get(name);
    }
}

Since the ParagraphFormat objects are shared, we want to restrict what the clients can do
with them.  So ParagraphFormat itself is just an interface that does not permit clients to
change the underlying object.

interface ParagraphFormat {
    ParagraphFormat nextParagraphFormat();
    String defaultFont();
    int fontSize();
    int spacing();
}

The class ParagraphFormatImplementation actually implements the ParagraphFormat
objects, and includes a variety of accessor methods and constructors for these variables:

class ParagraphFormatImplementation implements ParagraphFormat {
    String defaultFont;
    int fontSize;
    int spacing;
    String nextParagraphFormat;

Each ParagraphFormat object stores the name of the ParagraphFormat to be used for the
next paragraph.  This makes it easier to initialise the ParagraphFormat objects, and will give
the correct behaviour if we replace a specific ParagraphFormat in the catalogue with another.

To find the corresponding ParagraphFormat object, it must also refer to the catalogue
public ParagraphFormat nextParagraphFormat() {
        return ParagraphFormatCatalog.catalog().
            findFormat(nextParagraphFormat);
}

When the Document class creates a new paragraph, it use the shared ParagraphFormat
returned by the format of the current paragraph:  Note that ParagraphFormat objects are
never copied, so the will be shared between all paragraphs that have the same format.

public Paragraph newParagraph() {
        ParagraphFormat nextParagraphFormat =
            currentParagraph().format().nextParagraphFormat();
        Paragraph newParagraph = new Paragraph(nextParagraphFormat);
        insertParagraph(newParagraph);
        return newParagraph;
    }

v v v

Known Uses
Java’s String instances are immutable, so implementations share a single underlying buffer
between any number of copies of the same String object [Gosling et al 1996].  And all
implementations of Smalltalk use tokens for pre-compiled strings, as discussed above.



Sharing UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 17

C++’s template feature often generate many copies of very similar code, leading to ‘code
bloat’.  Some C++ linkers detect and share such instances of duplicated object code –
Microsoft, for example, call this ‘COMDAT folding’ [Microsoft 1997].  Most modern
operating systems provide Dynamic Link Libraries (DLLs) or Shared libraries that allow
different processes to use the same code without needing to duplicate it in every executable
[Kenah and Bate 1984; Card et al1998].

The EPOC Font and Bitmap server stores font and image data loaded from RESOURCE FILES in
shared memory [Symbian 1999]. These are used both by applications and by the Window
Server that handles screen output for all applications.  Each client requests and releases the
font and bitmap data using remote procedure calls to the server process; the server loads the
data into shared memory or locates an already-loaded item, and thereafter the application can
access it directly (read-only).  The server uses reference counting to decide when to delete each
item; an application will normally release each item explicitly but the EPOC operating system
will also notify the server if the application terminates abnormally, preventing memory leaks.

See Also
SHARING was first described as a pattern in the Design Patterns Smalltalk Companion [Alpert,
Brown, Woolf 1998].

COPY-ON-WRITE provides a mechanism to change a shared object as seen by one object, without
impacting any other objects that rely on it.  The READ-ONLY MEMORY pattern describes how you
can ensure that objects supposed to be read-only cannot be modified. Shared things are often
READ-ONLY, and so often end up stored on SECONDARY STORAGE.

The FLYWEIGHT PATTERN [Gamma et al 1995] describes how to make objects read-only so that
they can be shared safely.  Objects may also need to be moved into a SINGLE PLACE for
modelling reasons [Noble 1997].  Ken Auer and Kent Beck [1996] describe techniques to avoid
sharing Smalltalk objects by accident.
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Copy-on-Write
How can you change a shared object without affecting its other clients?

• You need the system to behave as if each client has its own mutable copy of some
shared data.

• To save memory you want to share data, or

• You need to modify data in Read-Only Memory.

Often you want the system to behave as though there are lots of copies of a piece of shared
data, each individually modifiable, even though there is only one shared instance of the data.
For example, in the Word-O-Matic word processor, each paragraph has its own format, which
users can change independently of any other paragraph.  Giving every paragraph its own
ParagraphFormat object ensures this flexibility, but duplicates data unnecessarily because
there are only a few different paragraph formats used in most documents.

We can use the SHARING pattern instead, so that each paragraph format object describes several
paragraphs. Unfortunately, a change to one shared paragraph format will change all the other
paragraphs that share that format, not just the single paragraph the user is trying to change.

There’s a similar problem if you’re using READ-ONLY MEMORY (ROM). Many operating systems
load program code and read-only data into memory marked as ‘read-only’, allowing it to be
shared between processes; In palmtops and embedded systems the code may be loaded into
ROM or flash RAM.  Clients may want changeable copies of such data; but making an
automatic copy by default for every client will waste memory.

Therefore: Share the object until you need to change it, then copy it and use the copy in future.

Maintain a flag or reference count in each sharable object, and ensure it’s set as soon as there’s
more than one client to the object.  When a client calls any method that modifies a shared
object’s externally visible state, create a duplicate of some or all of the object’s state in a new
object, delegate the operation to that new object, and ensure that the the client uses the new
object from then on.  The new object will initially not be shared (with flag unset or reference
count of one), so further modifications won’t cause a copy until the new object in turn then gets
multiple clients.

You can implement COPY-ON-WRITE for specific objects in the system, or implement it as part of
the operating system infrastructure using PAGING techniques.  The latter approach is
particularly used with code, which is normally read-only but allows a program to modify its
own code on occasion, in which case a paging system can make a copy of part of the code for
that specific program instance.

Thus Word-O-Matic keeps a reference count of the number of clients sharing each
ParagraphFormat object.  In normal use many Document objects will share the same
ParagraphFormat, but on the few occasions that a user modifies the format of a paragraph,
Word-O-Matic makes a copy of its ParagraphFormat and keeps that separate to the modified
Paragraph and to any other Paragraphs with the new format.

Consequences
COPY-ON-WRITE gives programmers the illusion of many copies of a piece of data, without the
waste of memory that would imply.  So it reduces the memory requirements of the system.  In
some cases it increases a program’s execution speed, and particularly its start-up time, since
copying can be a slow operation.
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COPY-ON-WRITE also allows you to make it appear that data stored in read-only storage can be
changed.  So you can move infrequently changed data into read-only storage, reducing the
program’s memory requirements.

Once COPY-ON-WRITE has been implemented it requires little programmer discipline to use,
since clients don’t need to be directly aware of it.

However:  COPY-ON-WRITE requires programmer effort or hardware or operating system support to
implement, because the system must intercept writes to the data, make the copy and then
continue the write as if nothing had happened.

If there are many write accesses to the data, then COPY-ON-WRITE can decrease time
performance, since each write access must ensure the data’s not shared. COPY-ON-WRITE can
also lead to lots of copies of the same thing cluttering up the system, decreasing the
predictability of the system’s performance, making it harder to test, and ultimately increasing
the system’s memory requirements.

COPY-ON-WRITE can cause problems for object identity if the identity of the copy and the
original storage is supposed to be the same.

v v v

Implementation
Here are some issues to consider when implementing the COPY-ON-WRITE pattern.

1. Copy-On-Write Proxies

The most common approach to implementing COPY-ON-WRITE is to use a variant of the PROXY

Pattern [Gamma et al 1995, Buschmann et al 1996, Coplien 1994].  Using the terminology of
Bushman et al [1996], a PROXY references an underlying Original object and forwards all the
messages it receives to that object.

To use PROXY to implement COPY-ON-WRITE, every client uses a different PROXY object, which
distinguishes accessors, methods that merely read data, from mutators that modify it.  The
Original Object contains a flag that records whether it has more than one Proxy sharing it.
Any updator method checks this flag and if the flag is set, makes a (new, unshared) copy of the
representation, installs it in the proxy, and forwards the mutator to the that copy instead.

mutate()
access()

Proxy
original

11..*

access()
mutate()

Original clone()

shared: bool

Original

Client Uses

if (original.shared)
   original = original.clone()
original.mutate()

original.access()

In this design, the shared flag is stored in the Original object, and it’s the responsibility of the
representation’s clone method to create an object with the flag unset. A valid alternative
implementation is to place the flag into the Proxy object; in this case the Proxy must reset the
flag after creating and installing a new Original object.  As a third option, you can combine the
Client and Proxy object, if the Client knows about the use of COPY-ON-WRITE, and if no other
objects need to use the Original (other than via the combined Client/Proxy, of course).
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You can also combine the function of COPY-ON-WRITE with managing the lifetime of the underlying
representation object by replacing the shared flag in the Representation object with a reference count.
A reference count of exactly one implies the object is not shared and can be modified.  See the
REFERENCE COUNTING pattern for a discussion of reference counting in detail.

2. Copying Changes to Objects

You do not have to copy all of any object when it is changed. Instead you can create a ‘delta’
object that stores only the changes to the object, and delegates requests for unchanged data
back to the main object.  For example, when a user changes the font in a paragraph format, you
can create a FontChange delta object that returns the new font when it is asked, but forwards
all other requests to the underlying, and unchanged, ParagraphFormat object.  A delta object
can be implement as a DECORATOR on the original object [Gamma et al 1995].  The diagram
below uses UML shows a possible implementation as a UML Collaboration Diagram [Fowler
1997].

Before:

: Paragraph
Format Proxy

: Paragraph
Format1. Font

2. Spacing
1.1. Font

2.1 Spacing

: Paragraph
Format Proxy1. Font

2. Spacing
1.1. Font

2.1 Spacing

: Font Change : Paragraph
Format

2.1.1 Spacing

After:

3. Writing to Objects in Read-Only Memory

You can use COPY-ON-WRITE so that shared representations in ROM can be updated.   Clearly
the shared flag must be set in the ROM instance and cleared in the copy, but otherwise this is
no different from a RAM version of the pattern.

In C++ the rule is that only instances of classes without a constructor may be placed in ROM.
So a typical implementation must use static initialisation for the flag, and must therefore have
public data members.  The restriction on constructors means that you can’t implement a copy
constructor and assignment operator; instead you’ll need to write a function that uses the
default copy constructor to copy the data.

Example
This example extends the word processor implementation from the SHARING pattern, to allow
the user to change the format of an individual paragraph.  In this example the Paragraph
object combines the role of Proxy and Client, since we’ve restricted all access to the
ParagraphFormat object to via the Paragraph object. We don’t need to separate out the read-
only aspects to a separate interface as no clients will ever see ParagraphFormats directly.

The Document class remains unchanged, being essentially a list of paragraphs.  The
ParagraphFormat class is also straightforward, but now it supports mutator methods and
needs to implement the clone method.   For simplicity we only show one mutator – to set the
font.
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class ParagraphFormat implements Cloneable {
    String defaultFont;
    int fontSize;
    int spacing;
    String nextParagraphFormat;

    public Object clone() throws CloneNotSupportedException {
        return super.clone();
    }

    void privateSetFont(String aFont) {defaultFont = aFont;}
}

As in the previous example, the Paragraph class must also implement cloning.  This
implementation keeps the shared flag in the Paragraph class (i.e. in the Proxy), as the member
paragraphFormatIsUnique.

class Paragraph implements Cloneable {
    ParagraphFormat format;
    boolean paragraphFormatIsUnique = false;

    StringBuffer text = new StringBuffer();

    Paragraph(ParagraphFormat format) {
        this.format = format;
    }
    Paragraph(String formatName) {
        this(ParagraphFormatCatalog.catalog().findFormat(formatName));
    }

The Paragraph implementation provides two private utility functions:
aboutToShareParagraphFormat and aboutToChangeParagraphFormat.  The method
aboutToShareParagraphFormat should be invoked whenever we believe it’s possible that we
may be referencing a ParagraphFormat object known to any other object.

    protected void aboutToShareParagraphFormat() {
        paragraphFormatIsUnique = false;
    }

If any external client obtains a reference to our ParagraphFormat object, or passes in one
externally, then we must assume that it’s shared:

    ParagraphFormat format() {
        aboutToShareParagraphFormat();
        return format;
    }

    public void setFormat(ParagraphFormat aParagraphFormat) {
        aboutToShareParagraphFormat();
        format = aParagraphFormat;
    }

And similarly, if a client clones this Paragraph object, we don’t want to clone the format, but
instead simply note that we’re sharing it:

    public Object clone() {
        try {
            aboutToShareParagraphFormat();
            Paragraph myClone = (Paragraph) super.clone();
            myClone.text =  new StringBuffer(text.toString());
            return myClone;
        } catch (CloneNotSupportedException ex) {
            return null;
        }
    }

Meanwhile any method that modifies the ParagraphFormat object must first call
aboutToChangeParagraphFormat. This method makes sure the ParagraphFormat object is
unique to this Paragraph, cloning it if necessary.
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    protected void aboutToChangeParagraphFormat() {
        if (!paragraphFormatIsUnique) {
            try {
                format = (ParagraphFormat) format().clone();
            } catch (CloneNotSupportedException e) {}
            paragraphFormatIsUnique = true;
        }
    }

Here’s a simple example of a method that modifies a ParagraphFormat:
    void setFont(String fontName) {
        aboutToChangeParagraphFormat();
        format.privateSetFont(fontName);
    }

v v v

Known Uses
Many operating systems use COPY-ON-WRITE in their paging systems. Executable code is very
rarely modified, so it’s usually SHARED between all processes using it, but this pattern allows
modification when processes need it.  By default each page out of an executable file is flagged
as read-only and shared between all processes that use it.   If a client writes to a shared page,
the hardware generates an exception, and operating system exception handler then creates a
writable copy for that process alone.  [Kenah and Bate 1984; Goodheart and Cox 1994]

RogueWave’s Tools.h++ library uses COPY-ON-WRITE for its CString class [RogueWave
1994].  A CString object represents a dynamically allocated string.  C++’s pass-by-value
semantics mean that the CString objects are copied frequently, but very seldom modified.  So
each CString object is simply a wrapper referring to a shared implementation.  CString’s
copy constructor and related operators manipulate a reference count in the shared
implementation.  If any client does an operation to change the content of the string; the
CString object simply makes a copy and does the operation on the copy.  One interesting
detail is that there is only one instance of the null string, which is always shared.  All attempts
to create a null string, for example by initialising a zero length string, simply access that shared
object.

Because modifiable strings are relatively rare in programs, Sun Java implements them using a
separate class, StringBuffer.  However StringBuffer permits it’s clients to retrieve String
objects with the method toString.  To save memory and speed up performance the resulting
String uses the underlying buffer already created by StringBuffer.  However the
StringBuffer object has a flag to indicate that the buffer is now shared; if a client attempts
to make further changes to the buffer, StringBuffer creates a copy and uses that. [Chan et al
1998]

Objects in NewtonScript were defined using inheritance, so that common features could be
declared in a parent object and then shared by all child objects that needed them. Default values
for objects’ fields were defined using copy-on-write slots. If a child object didn’t define a field
it would inherit that field’s value from its parent object, but when a child object wrote to a
shared field a local copy of the field was automatically created in the child object. [Smith
1999].

See Also
HOOKS provide an alternative technique for changing the contents of read-only storage.
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Embedded Pointer
How can you reduce the space used by a collection of objects?

• Linked data structures are built out of  pointers to objects

• Collection objects (and their internal link objects) occupy large amounts of memory to
store large collections.

• Traversing through a linked data structure can require temporary memory, especially if
the traversal is recursive.

Object-Oriented programs implement relationships between objects by using collection objects
that store pointers to other objects.  Unfortunately, collection objects and the objects they use
internally can require a large amount of memory.  For example, the Strap-It-On’s ‘Mind
Reader’ brainwave analysis program must receive brainwave data in real-time from an
interrupt routine, and store it in a list for later analysis.  Because brainwaves have to be
sampled many times every second, a large amount of data can accumulate before it can be
analysed, even though each brainwave sample is relatively small (just a couple of integers).
Simple collection implementations based on linked lists can impose an overhead of at least
three pointers for every object they store, so storing a sequence of two-word samples in such a
list more than doubles the sequence’s intrinsic memory requirements – see figure xx below.

List Header

First

Last

Collected Object Collected Object Collected Object

Next

ObjectPtr

Next

ObjectPtr

Next

ObjectPtr

Figure 2: Linked list using external pointers

As well as this memory overhead, linked data structures have other disadvantages. They can
use large numbers of small internal objects, increasing the possibility of fragmentation (see
Chapter N).  Allocating all these objects takes an unpredictable amount of time, making it
unsuitable for real-time work.  Traversing the structure requires following large numbers of
pointer links; this also takes time, but more importantly, traversals of recursive structures like
graphs and trees can also require an unbounded amount of temporary memory; in some cases,
similar amounts of memory to that required to store the structure itself.  Finally, any function
that adds an object to such a collection may fail if there is insufficient memory, and so must
carry all the costs of PARTIAL FAILURE.

Of course, linked structures have many compensating advantages. They can describe many
different kinds of structures, including linked lists, trees, queues, all of a wide variety of
different subtypes [Knuth 1997].  These structures can support a wide variety of operations
quite efficiently (especially insertions and deletions in the middle of the data). Linked structures
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support VARIABLE ALLOCATION, so they never need to allocate memory that is subsequently
unused.  The only real alternative to building linked structures is to use some kind of FIXED

ALLOCATION, such as a fixed-size array. But fixed structures place arbitrary limits on the
number of objects in the collection, waste memory if they are not fully occupied, and insertion
and deletion operations can be very expensive.  So, how can you keep the benefits of linked
data structures while minimising the disadvantages?

Therefore:  Embed the pointers maintaining the collection into each object.

Design the collection data structure to store its pointers within the objects that are contained in
the structure, rather than in internal link objects.  You will need to change the definitions of the
objects that are to be stored in the collection to include these pointers (and possibly to include
other collection-related information as well).

You will also need to change the implementation of the collection object to use the pointers
stored directly in objects. For a collection that is used by only one external client object, you
can even dispense completely with the object that represents the collection, and incorporate its
data and operations directly into the client.  To traverse the data structure, use iteration rather
than recursion to avoid allocating stack frames for every recursive call, and use extra (or reuse
existing) pointer fields in the objects to store any state related to the traversal.

So, for example, rather than store the Brainwave sample objects in a collection, Strap-it-On’s
Brainwave Driver uses an embedded linked list. Each Brainwave sample object has an extra
pointer field, called Next, that is used to link brainwave samples into a linked list. As each
sample is received, the interrupt routine adjusts its Next field to link it into the list.  The main
analysis routine adjusts the sample object’s pointers to remove each from the list in its own
time for processing.

List Header

First

Last

Collected Object

Next Collected Object

Next Collected Object

Next

Figure 3: Linked list using embedded pointers

Consequences
Embedded pointers remove the need for internal link objects in collections, reducing the number
of objects in the system and thus the system’s memory requirements, while increasing the
predictability of the systems memory use (especially if traversals are iterative rather than
recursive).  The routines to add and remove items from the linked list cannot suffer memory
allocation failure.

Using embedded pointers reduces or removes the need for dynamic memory allocation,
improving the real-time performance of the system.  Some operations may have better run-
time performance; for example with an embedded doubly-linked list you can remove an
element in the collection simply by using a pointer to that element directly. With an
implementation using external pointers (such as STL’s Deque [Austern 1998]) you’d need first
to set an iterator to refer to the right element, which requires a linear search.
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However:   Embedded pointers don’t really belong to the objects they are embedded inside. This
pattern reduces those objects’ encapsulation, gaining a local benefit but reducing the
localisation of the design.  The pattern tightly couples objects to the container class that holds
them, making it more difficult to reuse either class independently, increasing the programmer
effort required because specialised collections often have to be written from scratch, reducing
the design quality of the system and making the program harder to maintain.

In many cases a given collected object it will often need to be in several different collections at
different times during its lifetime.  It requires programmer discipline to ensure that the same
pointer is never used by two collections simultaneously.

v v v

Implementation
Applying the Embedded Pointer pattern is straightforward: place pointer members into objects
and build up linked data structures using those pointers, instead of using external collection
objects.  You can find the details in any decent textbook on data structures from Knuth [1997],
which will describe the details, advantages, and disadvantages of the classical linked data
structure designs, from simple singly and doubly linked lists to subtle complex balanced trees.
See the SMALL DATA STRUCTURES pattern for a list of such textbooks.

1. Reuse

The main practical issue when using embedded pointers is how to incorporate the pointers into
objects in a way that provides some measure of reuse, to avoid re-implementing all the
collection operations for every single list.  The key idea is for objects to somehow present a
consistent interface for accessing the embedded pointers to the collection class (or the functions
that implement the collection operations). In this way, the collection can be used with any
object that provides a compatible interface.   There are three common techniques for
establishing interfaces to embedded pointers: inheritance, inline objects, and preprocessor
constructs.

1.1.  Inheritance.  You can put the pointers and accessing functionality into a superclass, and
make the objects to be stored in a collection inherit from this class.  This is straightforward,
and provides a measure of reuse.  However: you can’t have more than one instance of such a
pointer for a given object; if the pointer is implementing a collection, this would limit.  In
single-inheritance languages like Smalltalk it also prevents any other use of inheritance for the
same object, and so limits any object to be in only one collection at a time. In languages with
multiple inheritance objects could be in multiple collections provided each collection accesses
the embedded pointers through a unique interface, supplied by a unique base class (C++) or
interface (Java).

supportFunctions()

embeddedPointer

EmbeddableObject

Client Object
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1.2.  Inline Objects.   In languages with inline objects, like C and C++, you can embedded a
separate ‘link’ object that contains the pointers directly into the client object.  This doesn’t
suffer from the disadvantages of using Inheritance, but you need to be able to find the client
object from a given link object and vice versa.  In C++ this can be implemented using pointers
to members, or (more commonly) as an offset in bytes.

Offset

Client Object

embedded Pointer

Link Object

For example, EPOC’s collection libraries find embedded pointers using byte offsets. Whenever
a new collection is created, it must be initialised with the offset inside its client objects where
its pointers are embedded.

1.3.  Preprocessors.  C++ provides two kinds of preprocessing: the standard preprocessor
cpp, and the C++ template mechanisms.  So in C++ a good approach is to include the
embedded pointers as normal (possibly public) data members, and to reuse the management
code via preprocessing. You can also preprocess code in almost any other language given a
suitable preprocessor , which could be either a special purpose program like m4, or a general
purpose program like perl.

2. Pointer Differences

Sometimes an object needs to store two or more pointers; for example a circular doubly-linked
list node needs pointers to the previous and next item in the list. You can reduce the amount of
memory needed to store by storing the difference (or the bitwise exclusive or) of the two
pointers, rather than the pointer itself. When you are traversing the structure forwards, for
example, you take the address of the previous node and add the stored difference to find the
address of the next node; reverse traversals work similarly.

For example, in Figure XXX, rather than node c storing the dotted forward and back pointers
(i.e. the addresses of nodes b and d) node c stores only the difference between these two
addresses.  Given a pointer to node b and the difference stored within c, you can calculate the
address of node d as (b – (d-c)).  Similarly, traversing the list the other way, given the address
of node d and (b-c) you can calculate the address of node b as (d+(b-d)). For this to work, you
need to store two initial pointers, typically a head and tail pointer for a circular doubly-linked
list [Knuth 1997].

b

(a-c)

c

(b-d)

d

(c-e)

(3) Traversals

A related, but different, problem happens when you need to traverse an arbitrarily deep
structure, especially if the traversal has to be recursive.  Suppose for example you have an
unbalanced binary tree, and you need to traverse through all the elements in order.   A traversal
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beginning at E will recursively visit C, then F; the traversal at C will visit B and D, and so on.
Every recursive call requires extra memory to store activation records on the stack, so
traversing larger structures can easily exhaust a process’s stack space.

C

B

A

E

D

F

3.1.  Iterative traversals using extra embedded pointers.  Consider the traversal more
closely: at each object it needs to store one thing on the stack: the identity of the object its
coming from (and possibly any working data or parameters passed through the iteration).  So
for example, when C invokes the operation on D, it must store that it needs to return to E on
completion.  You can use Embedded Pointers in each object to store this data (the parent, and
the traversal state —  two Boolean flags that remember whether the left and right leaves have
been processed). This allows you to iterate over the structure using a loop rather than
recursion, but imposes the overhead of an extra pointer or two in each object.

doAction()
static iterate()

previousObject
currentlyProcessing

Collected Object

left right

current = TopElement
while (true) {
   if (we've processed left and not right)
      doAction();

   if (left exists && we've not processed it)
      start processing left object;
   else if (right exists && we've not processed it)
      start processing right object
   else (if previous exists)
      return to processing previous object
   else

return;
   }

3.2.  Iterative traversals using pointer reversal. Consider the iteration process further.  At
any time one of the three pointers in each element, left leaf, right leaf or parent, is redundant.
If there is no iteration, the parent pointer is redundant; if a left or right left is currently being
processed that leaf pointer is redundant (because the traversal has already reached that leaf).
Pointer reversal allows iterative traversals of linked structures by temporarily using pointers to
leaf nodes as parent pointers: as the traversal proceeds around the object, the pointers currently
being followed are ‘reversed’, that is, used to point to parent objects.

In the figure above, for example, when a traversal is at node A, node B’s left leaf pointer would
be reversed to point to its parent, node C; because B is C’s left child, C’s left child pointer
would also be reversed to point to node E.
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Example
Here’s an example using Embedded Pointers to store a data structure and traverse it using
pointer reversal.  The example program implements a sorting algorithm using a simple binary
tree.  To start with we’ll give the objects that are stored in the tree (the BinaryTreeObjects)
a single character of local data.  We also need a greaterThan operation and a operation
called to do the action we need (doIt).

class BinaryTreeObject {
    char data;

    BinaryTreeObject(char data) {
        this.data = data;
    }

    Object doIt(Object param) {
        return ((String) param + data);
    }

    boolean greaterThan(BinaryTreeObject other) {
        return data > other.data;
    }

A binary tree needs a left pointer and a right pointer corresponding to each node.  Using the
Embedded Pointers pattern, we implement each within the structure itself:

    BinaryTreeObject left;
    BinaryTreeObject right;

Adding an element to the binary tree is fairly easy.  We can traverse the tree starting at the top,
going left when our new element is less than the current item, greater when it’s greater, until we
get to a vacant position in the tree.

static void insert(BinaryTreeObject top, BinaryTreeObject newItem) {
        BinaryTreeObject current = top;

        for (;;) {
            if (current.greaterThan(newItem)) {
                if (current.left == null) {
                    current.left = newItem;
                    return;
                } else {
                    current = current.left;
                }
            } else {
                if (current.right == null) {
                    current.right = newItem;
                    return;
                } else {
                    current = current.right;
                }
            }
        }
    }
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Note that this method is not recursive and so should allocate no memory other than one stack
frame with one local variable (current).

Traversing the tree is more difficult, because the traversal has to visit all the elements in the
tree, and this means backtracking up the tree when it reaches a bottom-level node. To traverse
the tree without using recursion, we can add two embedded pointers to every tree node: a
pointer to the previous (parent) item in the tree, and a marker noting which action, left node or
right node, the algorithm is currently processing.

BinaryTreeObject previous;
    static final int Inactive = 0, GoingLeft = 1, GoingRight = 2;
    int action = Inactive;

The traversal method, then, must move through each node in infix order.  Each iteration
visits one node; however this may mean up to three visits to any given node (from parent going
left, from left going right, and from right back to parent); we use the stored action data for the
node to see which visit this one is.  The traversal method must also call the doIt method at
the correct point – after processing the left node, if any.

static Object traversal(BinaryTreeObject start, Object param) {
        BinaryTreeObject current = start;

        for (;;) {

            if (current.action == GoingLeft ||
                (current.action == Inactive && current.left == null)) {
                param = current.doIt(param);
            }

            if (current.action == Inactive && current.left != null) {
                current.action = GoingLeft;
                current.left.previous = current;
                current = current.left;
            } else if (current.action != GoingRight && current.right != null) {

current.action = GoingRight;
current.right.previous = current;
current = current.right;

    }  else {
current.action = Inactive;
if (current.previous == null) {
    break;
}
current = current.previous;

    }

        }
        return param;
}

Of course, a practical implementation would improve this example in two ways.  First we can
put the left, right, action, previous pointers and the greaterThan stub into a base class
(SortableObject, perhaps) or into a separate object.  Second we can make the traversal()
method into a separate ITERATOR object [Gamma et al 1995], avoiding the need to hard-code the
doIt method.

We can extend this example further, to remove the parent pointer from the data structure using
Pointer Reversal.  First, we’ll need two additional methods, to save the parent pointer in either
the left or the right pointer:
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BinaryTreeObject saveParentReturningLeaf(BinaryTreeObject parent) {
        BinaryTreeObject leaf;

        if (action == GoingLeft) {
            leaf = left;
            left = parent;
        } else {
            leaf = right;
            right = parent;
        }
        return leaf;
    }

and then to restore it as required:
BinaryTreeObject restoreLeafReturningParent(BinaryTreeObject leafJustDone) {
        BinaryTreeObject parent;

        if (action == GoingLeft) {
            parent = left;
            left = leafJustDone;
        } else {
            parent = right;
            right = leafJustDone;
        }
        return parent;
    }

Now we can rewrite the traversal method to remember the previous item processed, whether
it’s the parent of the current item or a leaf node, and to reverse the left and right pointers using
the methods above:

static Object reversingTraversal(BinaryTreeObject top, Object param) {

        BinaryTreeObject current = top;
        BinaryTreeObject leafJustDone = null;
        BinaryTreeObject parentOfCurrent = null;

        for (;;) {

            if (current.action == GoingLeft ||
                (current.action == Inactive && current.left == null)) {
                param = current.doIt(param);
            }

            if (current.action != Inactive)
                parentOfCurrent = current.restoreLeafReturningParent(leafJustDone);

            if (current.action == Inactive && current.left != null) {
                current.action = GoingLeft;
                BinaryTreeObject p = current;
                current = current.saveParentReturningLeaf(parentOfCurrent);
                parentOfCurrent = p;
            } else if (current.action != GoingRight && current.right != null) {

current.action = GoingRight;
BinaryTreeObject p = current;
current = current.saveParentReturningLeaf(parentOfCurrent);
parentOfCurrent = p;

            } else {
                current.action = Inactive;
                if (parentOfCurrent == null) {
                    break;
                }
                leafJustDone = current;
                current = parentOfCurrent;
            }

        }
        return param;
    }

We’re still wasting a word in each object for the ‘action’ parameter.  In Java we could perhaps
reduce this to a byte but no further.  In a C++ implementation we could use the low bits of,
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say, the left pointer to store it (see PACKED DATA – packing pointers), thereby reducing the
overhead of the traversing algorithm to nothing at all.

v v v

Known Uses
EPOC provides at least three different ‘linked list’ collection classes using embedded pointers
[Symbian 1999].  The embedded pointers are instances of provided classes (TSglQueLink, for
example) accessed via offsets; the main collection logic are in separate classes, which use the
‘thin template idiom’ to provide type safety: TSglQueue<MyClass>.   EPOC applications, and
operating system components, use these classes extensively.  The most common reason for
preferring them over collections requiring heap memory is that operations using them cannot
fail; this is a significant benefit in situations where failure handling is not provided.

The Smalltalk LinkedList class uses inheritance to mix in the pointers; the only things you
can store into a LinkedList are objects that inherit from class Link [Goldberg and Robson
1983].  Class Link contains two fields and appropriate accessors (previous and next) to
allow double linking.  Compared with other Smalltalk collections, for each element you save
one word of memory by using concatenation instead of pointers, plus you save the memory
overhead of creating a new object (two words or so) and the overhead of doing the allocation.

See Also
You may be able to use FIXED ALLOCATION to embed objects directly into other objects, rather
than just embedding pointers to objects.

Pointer reversal was first described by Peter Deutsch [Knuth 1997] and Schorr and Waite
[1967]. Embedded Pointers and pointer reversal are used together in many implementations of
GARBAGE COLLECTION [Goldberg and Robson 1983, Jones and Lins 1996].  Jiri Soukup
discusses using preprocessors to implement linked data structures in much more detail [1994].
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Multiple Representations
How can you support several different implementations of an object?

• There are several possible implementations of a class, with different trade-offs between
size and behaviour.

• Different parts of your system, or different uses of the class, require different choices of
implementation.  One size doesn’t fit all.

• There are enough instances of the class to justify extra code to reduce RAM usage.

Often when you design a class, you find there can be several suitable representations for its
internal data structures.  For example, in the Strap-It-On’s word-processor (Word-O-Matic) a
word may be represented as a series of characters, a bitmap, or a sequence of phonemes.
Depending on the current output mechanism (a file, the screen, or the vocaliser) each of these
representations might be appropriate.

Having to choose between several possible representations is quite common.  Some
representations may have small memory requirements, but be costly in processing time or other
resources; others may be the opposite.  In most cases you can examine the demands of the
system and decide on a best SMALL DATA STRUCTURE.  But what do you do when there’s no
single ‘best’ implementation?

Therefore: Make each implementation satisfy a common interface.

Design a common abstract interface that suits all the implementations without depending on a
particular one, and ensure every implementation meets the interface.  Access implementations
via an ABSTRACT CLASS [Woolf 2000] or use ADAPTERS to access existing representations
[Gamma et al 1995] so clients don’t have to be aware of the underlying implementation.
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Bar()

Common Interface

Client

Foo()
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Implementation
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For example, Word-O-Matic defines a single interface ‘Word’, which is used by much of the
word-processing code.  Several concrete classes, StorableWord, ViewableWord,
SpokenWord, that implement the Word interface.  Each implementation has different internal
data structures and different implementations of the operations that access those structures.
The software creates whichever concrete class is appropriate for the current use of the Word
object, but the distinction is only significant when it comes to outputting the object. The
multiple implementations are concealed from most of the client code.
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Consequences
The system will use the most appropriate implementation for any task, reducing the memory
requirements and processing time overheads that would be imposed by using an inappropriate
representation.  Code using each instance will use the common interface and need not know the
implementation, reducing programmer effort on the client side and increasing design quality
and reusability.

Representations can be chosen locally for each data structure.  More memory-intensive
representations can be used when more memory is available, adding to the scalability of the
system.

However: The pattern can also increase total memory requirements, since the code occupies additional
memory.

MULTIPLE REPRESENTATIONS increases programmer effort in the implementation of the object
concerned, because multiple implementations are more complex than a single implementation,
although this kind of complexity is often seen as a sign of high-quality design because
subsequent changes to the representation will be easier. For the same reason, it increases
testing costs and maintenance costs overall, because each alternative implementation must be
tested and maintained separately.

Changing between representations imposes a space and time overhead.  It also means more
complexity in the code, and more complicated testing strategies, increasing programmer effort
and making memory use harder to predict.

v v v

Implementation
There are number of issues to take into account when you are using MULTIPLE
REPRESENTATIONS.

1. Implementing the Interface.

In Java the standard implementation of dynamic binding means defining either a Java class or a
Java interface.  Which is more suitable?  From the point of view of the client, it doesn’t matter;
either can define an abstract interface. Using a Java interface gives you more flexibility,
because each implementation may inherit from other existing classes as required; however,
extending a common superclass allows several implementations to inherit common
functionality.  In C++ there’s only the one conventional option for implementing the common
interface: making all implementations inherit from a base class that defines the interface.

There’s a danger that clients may accidentally rely on features on a particular implementation –
particularly non-functional ones – rather than of the common interface. D’Souza and Wills
[1998] discuss design techniques to avoid such dependencies in components.

2. Binding clients to implementations.

Sometimes you need to support several implementations, though a given client may only ever
use one. For example, the C++ Standard Template Library (STL) iterator classes work on
several STL collections, but any given STL iterator object works with only one [Stroustrup
1997, Austern 1998]. In this case, you can statically bind the client code to use only the one
implementation   in C++ you could store objects directly and use non-virtual functions. If,
however, a client needs to use several different object representations interchangeably then you
need to use dynamic binding.
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3. Creating dynamically bound implementations

The only place where you need to reference the true implementation classes in the code is where
the objects are created.  In many situations, it’s reasonable to hard code the class names in the
client, as in the following C++ example:

CommonInterface *anObject = new SpecificImplementation( parameters );

If there’s a good reason to hide even this mention of the classes from the client, then the
ABSTRACT FACTORY pattern [Gamma et al 1995] can implement a ‘virtual constructor’ [Coplien
1994] so that the client can specify which object to create using just a parameter.

4. Changing between representations

In some cases, an object’s representation needs to change during its lifetime, usually because a
client needs some behaviour that is not supported well by the object’s current representation.
Changes to an object’s representation can be explicitly requested by its client, or can be
triggered automatically within the object itself. Changing representations automatically has
several benefits: the client doesn’t need knowledge of the internal implementation, improving
encapsulation, and you can tune the memory use entirely within the implementation of the
specific object, improving localisation. Changing representations automatically requires
dynamic binding, so clients will use the correct representation without being aware of it. In
some situations, however, the client can have a better knowledge of optimisation strategies than
is available to the object itself, typically because the client is in a better position to know which
operations will be required.

4.1.  Changing representations explicitly. It is straightforward for an object to let a client
change its representation explicitly: the object should implement a conversion function (or a
C++ constructor) that takes the common interface as parameter, and returns the new
representation.

class SpecificImplementation : public CommonInterface
{ public:
    SpecificImplementation( CommonInterface c ) {
    // initialise this from c
     }
};

4.2. Changing representations automatically. You can use the BRIDGE pattern to keep the
interface and identity of the object constant when its internal structure changes (strictly
speaking a ‘half bridge’, since it varies only the object implementation and not the abstraction
it supports) [Gamma et al 1995].  The client sees only the bridge object, which delegates all its
operations to an implementation object through a common interface:
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The bridge class needs the same methods as the common interface; so it’s reasonable (though
unnecessary) in C++ and Java to make the Bridge class derive from the common interface.
Each implementation object will need a construction function taking the common interface as
parameter.  Of course, some implementations may store more or less data, so there may be
special cases with more specific constructors.

Some languages make it simple to implement the Bridge object itself. In Smalltalk, for
example, you can override the DoesNotUnderstand: method to pass any unrecognised
operation on to the implementation object [Lalonde 1994]. In C++ you can implement
operator->() to do the same [Coplien 1994], or alternatively you can avoid deriving the
Bridge class from the common interface and by make all its functions non-virtual and inline.

Example
This Java example implements a Word object with two representations: as a simple string (the
default), and as a string with an additional cached corresponding sound.  Both these
representations implement the basic Word interface, which can return either a string or sound
value, and allows clients to choose the most appropriate representation.

interface WordInterface
{
    public byte[] asSound();
    public String asString();
    public void becomeSound();
    public void becomeString();
}

The most important concrete class is the Word class, that acts as a bridge between the Word
abstraction an its two representations, as a sound and as a text string.

class Word implements WordInterface {
    private WordInterface rep;

    public byte[] asSound()     {return rep.asSound();}
    public String asString()    {return rep.asString();}
    public void becomeSound()   {rep.becomeSound();}
    public void becomeString()  {rep.becomeString();}

The constructor of the Word class must select an implementation.  It uses the method Become,
which simply sets the implementation object.
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public Word(String word) {
        become(new StringWordImplementation(this, word));
    }
    public void become(WordInterface rep) {
        this.rep = rep;
    }

The default implementation stores Words as a text string. It also keeps a pointer to its Word
BRIDGE object, and uses this pointer to automatically change a word’s representation into the
other format.  It has two constructors: one, taking a string, is used by the constructor for the
Word object; the other, taking a WordInterface, is used to create itself from a different
representation.

class StringWordImplementation implements WordInterface
{
    private String word;
    private Word bridge;

    public StringWordImplementation(Word bridge, String word) {
        this.bridge = bridge;
        this.word = word;
    }

    public StringWordImplementation(Word bridge, WordInterface rep) {
        this.bridge = bridge;
        this.word = rep.asString();
    }

It must also provide implementations of all the WordInterface methods.  Note how it must
change its representation to return itself as a sound; once the asSound method returns this
object will be garbage:

public byte[] asSound()
    {
        becomeSound();
        return bridge.asSound();
    }
    public String asString() {return word;}

    public void becomeSound() {
        bridge.become(new SoundWordImplementation(bridge, this));
    }
    public void becomeString() {}

Finally, the sound word class is similar to the text version, but also caches the sound
representation. Implementing the sound conversion function is left as an exercise for the reader!

class SoundWordImplementation implements WordInterface
{
    private String word;
    private Word bridge;
    private byte[] sound;

    SoundWordImplementation(Word bridge, WordInterface rep) {
        this.bridge = bridge;
        this.word = rep.asString();
        this.sound = privateConvertStringToSound(this.word);
    }

    public String asString() {return word;}
    public byte[] asSound()  {return sound;}
    public void becomeString() {
        bridge.become(new StringWordImplementation(bridge, this));
    }
    public void becomeSound() {}
}

v v v
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Known Uses
Symbian’s EPOC C++ environment handles strings as Descriptors containing a buffer and a
length.  Descriptors provide many different representations of strings: in ROM, in a fixed-
length buffer, in a variable length buffer and as a portion of another string.  Each kind of
descriptor has its own class, and users of the strings see only two base classes: one for a read-
only string, the other for a writable string [Symbian 1999].

The Psion 5’s Word Editor has two internal representations of a document.  When the
document is small the editor keeps formatting information for the entire document; when the
document is larger than a certain arbitrary size, the editor switches to storing information for
only the part of the document currently on display.  The switch is handled internally to the
Editor’s ‘Text View’ component; clients of the component (including other applications that
need rich text) are unaware of the change in representation.

Smalltalk’s collection classes also use this pattern: all satisfy the same protocol, so a user need
not be aware of the particular implementation used for a given collection [Goldberg and
Robson 1983].  Java’s standard collection classes have a similar design [Chan et al 1998].
C++’s STL collections also use this pattern: STL defines the shared interface using template
classes; all the collection classes support the same access functions and iterator operations
[Stroustrup 1997, Austern 1998].

Rolfe&Nolan’s Lighthouse system has a ‘Deal’ class with two implementations: by default an
instance contains only basic data required for simple calculations; on demand, it extends itself
reading the entire deal information from its database. Since clients are aware when they are
doing more complex calculations, the change is explicit, implemented as a FattenDeal
method on the object.

MULTIPLE REPRESENTATIONS can also be useful to implement other memory saving patterns.  For
example the LOOM Virtual Memory system for Smalltalk uses two different representations
for objects: one for objects completely in memory, and a second for objects PAGED out to
SECONDARY STORAGE [Kaehler and Krasner 1983]. Format Software’s PLUS application
implements CAPTAIN OATES for images using three representations, which change dynamically: a
bitmap ready to bitblt to the screen, a compressed bitmap, and a reference to a representation
in the database.

See Also
The BRIDGE pattern describes how abstractions and implementations can vary independently
[Gamma et al 1994].  The MULTIPLE REPRESENTATIONS pattern typically uses only half of the
BRIDGE pattern, because implementations can vary (to give the multiple representations) but the
abstraction remains the same.

Various different representations can use explicit PACKED DATA or COMPRESSION, be stored in
SECONDARY STORAGE, be READ-ONLY, or be SHARED.  They may also use FIXED ALLOCATION or
VARIABLE ALLOCATION.
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How do you allocate memory to store your data structures?

• You’re developing object-oriented software for a memory-constrained system.

• You’ve designed suitable data structures for each of your objects.

• You need to store these data structures in main memory

• You need to recycle this memory once the objects are no longer required.

• Different classes – and different instances of a single class – have different allocation
requirements.

When a system begins running, it sees only virgin memory space.  A running program,
particularly an object-oriented one, uses this memory as ‘objects’ or data structures, each
occupying a unique and differently sized area of memory.   These objects will change with
time: some remain indefinitely; others last varying lengths time; some are extremely transient.
Computing environments need allocation mechanisms to call these structures into being from
the primordial soup of system memory.

For example the Strap-It-On PC uses objects in many different ways. User Interface objects
must be available quickly, with no awkward pauses.  Transient objects must appear and
disappear with minimum overhead.  Objects in its major calculation engines must be provided
and deallocated with minimum programmer effort.  Objects in its real-time device drivers must
be available within a fixed maximum time.  Yet processing power is limited so, for example, an
allocation technique that minimises programmer effort can’t possibly satisfy the real-time
constraints.  No single allocation approach suits all of these requirements.

At first glance, a particular environment may not appear to provide much of a choice,
especially as many object-oriented languages, including Smalltalk and Java, allocate all objects
dynamically [Goldberg and Robson 1983; Gosling et al 1996; Egremont 1999].  But in practice
even these languages support a good deal of variation.  Objects can exist for a long or short
time (allowing run-time compiler optimisations); you can reuse old objects rather than creating
new ones; or you can create all the objects you need at the start of the program.  More low-
level languages like C and C++ support even more possibilities.  So what strategy should you
use to store your objects?

Therefore: Choose the simplest allocation technique that meets your need.

Analyse each time you allocate an object decide which technique is most suitable for allocating
that object.  Generally, you should choose the simplest allocation technique that will meet your
needs, to avoid unnecessarily complicating the program, and also to avoid unnecessary work.
The four main techniques for allocating objects that we discuss in this chapter are (in order
from the simplest to the most complex):

FIXED ALLOCATION Pre-allocating objects as the system starts running

MEMORY DISCARD Allocating transient objects in groups, often on the stack.

VARIABLE ALLOCATION Allocating objects dynamically as necessary from a heap.

POOLED ALLOCATION Allocating objects dynamically from pre-allocated memory
space.
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The actual complexity of these patterns does depend on the programming language you are
using: in particular, in C or C++ MEMORY DISCARD  is easier to use than VARIABLE

ALLOCATION, while languages like Smalltalk and Java assume VARIABLE ALLOCATION as the
default.

What goes up must come down; what is allocated must be deallocated.  If you use any of the
dynamic patterns (VARIABLE ALLOCATION, MEMORY DISCARD or POOLED ALLOCATION) you’ll
also need to consider how the memory occupied by objects can be returned to the system when
the objects are no longer needed.  In this chapter we present three further patterns that deal with
deallocation: COMPACTION ensures the memory once occupied by deallocated objects can be
recycled efficiently, and REFERENCE COUNTING and GARBAGE COLLECTION determine when
shared objects can be deallocated.

Consequences
Choosing an appropriate allocation strategy can ensure that the program meets its memory
requirements, and that its runtime demands for memory are predictable.  Fixed allocation
strategies can increase a programs real-time responsiveness and time performance, while
variable strategies can ensure the program can scale up to take advantage of more memory if it
becomes available, and avoid allocating memory that is unused.

However: Supporting more than one allocation strategy requires programmer effort to implement.
The system developers must consider the allocation strategies carefully, which takes
significantly more work than just using the default allocation technique supported by the
programming language. This approach also requires programmer discipline since developers
must ensure that they do use suitable allocation strategies. Allocating large amounts of memory
as a system beings executing can increase its start-up time, while relying on dynamic allocation
can make memory use hard to predict in advance.

v v v

Implementation
As with all patterns, the patterns in this chapter can be applied together, often with one pattern
relying on another as part of its implementation. The patterns in this chapter can be applied in a
particularly wide variety of permutations.  For example, you could have very large object
allocated on the heap (VARIABLE ALLOCATION), which contains an embedded array of sub-
objects (FIXED ALLOCATION) that are allocated internally by the large containing object
(POOLED ALLOCATION).  Here, the FIXED ALLOCATION and POOLED ALLOCATION patterns are
implemented within the large object, and each pattern is supported by other patterns in their
implementation.

You can use different patterns for different instances of the same class.  For example, different
instances of the Integer class could be allocated on the heap (VARIABLE ALLOCATION), on the
stack (MEMORY DISCARD), or embedded in another object (FIXED ALLOCATION), depending on
the requirements of each particular use.

You can also choose between different patterns depending on circumstance.  For example, a
Smalltalk networking application was required to support a guaranteed minimum throughput,
but could improve its performance if it could allocate extra buffer memory.  The final design
pre-allocated a pool of five buffers (FIXED ALLOCATION); if a new work item arrived while all
the buffers were in use, and more memory was available, the system dynamically allocated
further buffers (VARIABLE ALLOCATION).

Here are some further issues to consider when designing memory allocation:
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1. Fragmentation

Fragmentation is a significant problem with dynamic memory allocation.  There are two kinds
of fragmentation: internal fragmentation, when a data structure does not use all the memory it
has been allocated; and external fragmentation, when memory lying between two allocated
structures cannot be used, generally because it is too small to store anything else. For example,
if you delete an object that occupies the space between two other objects, some of the deleted
object’s space will be wasted, unless

• the other objects are also deleted, giving a single contiguous memory space;
• you are able to move objects around in memory, to squeeze the unused space out

between the objects; or,
• you are lucky enough to allocate another object that fills the unused space exactly.

If the Memory Manager puts the new block in this space,
there'll be a wasted gap.  If elsewhere, then this space
remains.

Allocated MemoryFree Memory

New
block

Fragmentation is difficult to resolve because patterns which reduce internal fragmentation (say
by allocating just the right amount of memory) typically increase external fragmentation
because space is wasted between all the oddly sized allocated blocks of memory. Similarly,
patterns which reduce external fragmentation (by allocating equally-sized blocks of memory)
increase internal fragmentation because some memory will be wasted within each block.

2. Memory Exhaustion

No matter what allocation strategy you choose, you can never have enough memory to meet all
eventualities: you may not pre-allocate enough objects using FIXED ALLOCATION; or a request
for a VARIABLE ALLOCATION from heap or stack memory can fail; or the memory pools for
POOLED ALLOCATION can be empty.  Sooner or later you will run out of memory. When
planning your memory allocation, you also need to consider how you will handle memory
exhaustion.

2.1. Fixed Size Client Memories. You can expose a fixed-size memory model directly to your
users or client components.  For example, many pocket calculators make users choose one of
ten memories in which to save a value, with no suggestion that the system could have more
memory; many components support up to a fixed number of objects in their interfaces
(connections, tasks, operations or whatever) and generate an error if this number is exceeded.
This approach is easy to program, but it decreases the usability of the system, because it makes
users, or client components, take full responsibility for dealing with memory exhaustion.

2.2. Signal an error.  You can signal a memory exhaustion error to the client.  This approach
also makes clients responsible for handling the failure, but typically leaves them with more
options than if you provided a fixed number of user memories. For example, if a graphics
editor program does not have enough memory to handle a large image, users may prefer to shut
down other applications to release more memory in the system as a whole.



Memory Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 4

Signalling errors is more problematic internally, when one component sends an error to
another. Although it is quite simple to notify client components of memory errors, typically by
using exceptions or return codes, programming client components to handle errors correctly is
much more difficult (see the PARTIAL FAILURE pattern).

2.3. Reduce quality. You can reduce the quantity of memory you need to allocate by reducing
the quality of the data you need to store.  For example, you can truncate strings and reduce the
sampling frequency of sounds and images.  Reducing quality can maintain system throughput,
but is not applicable if it discards data that is important to users.  Using smaller images, for
example, may be fine in a network monitoring application, but not in a graphics manipulation
program.

2.4. Delete old objects.  You can delete old or unimportant objects to release memory for new
or important objects.  For example telephone exchanges can run out of memory when creating
a new connection, but they can regain memory by terminating the connection that’s been
ringing for longest, because it’s least likely to be answered (FRESH WORK BEFORE STALE,
[Meszaros 1998]).  Similarly, many message logs keep from overflowing by storing only a set
amount of messages and deleting older messages as new messages arrive.

2.5. Defer new requests.   You can delay allocation requests (and the processing that depends
on them) until sufficient memory is available.  The simplest and most common approach for
this is for the system not to accept more input until the current tasks have completed.  For
example many MS Windows applications change the pointer to a ‘please wait’ ikon, typically
an hourglass, meaning that the user can’t do anything else until this operation is complete.  And
many communications systems have ‘flow control’ mechanisms to stop further input until the
current input has been handled.  Even simpler is batch-style processing, reading elements
sequentially from a file or database and only reading the next when you’ve processed the
previous one.  More complicated approaches require concurrency in the system so that one task
can block on or queue requests being processed by another. Many environments support
synchronisation primitives like semaphores, or higher-level pipes or shared queues that can
block their clients automatically when they cannot fulfil a request. In single-threaded systems
component interfaces can support callbacks or polling to notify their clients that they have
completed processing a request.  Doug Lea’s book Concurrent Programming in Java [2000]
discusses this in more detail, and the techniques and designs he describes are applicable to most
object-oriented languages, not just Java.

2.6. Ignore the problem.  You can completely ignore the problem, and allow the program to
malfunction.  This strategy is, unfortunately, the default in many environments, especially
where paged virtual memory is taken for granted.  For example, the Internet worm propagated
through a bug in the UNIX finger demon where long messages could overwrite a fixed-sized
buffer  [Page 1988].  This approach is trivial to implement, but can have extremely serious
consequences: the worm that exploited the  finger bug disabled much of the Internet for
several days.

A more predictable version of this approach is to detect the problem and immediately to halt
the processing. While this will avoid any the program running amuck through errors in memory
use, it does not contribute to system stability or reliability in the long term.

v v v

Specialised Patterns
The following chapter explores seven patterns of memory allocation:
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FIXED ALLOCATION ensures you’ll always have enough memory by pre-allocating structures to
handle your needs, and by avoiding dynamic memory allocation during normal
processing.

VARIABLE ALLOCATION avoids unused empty memory space by using dynamic allocation to
take and return memory to a heap.

MEMORY DISCARD simplifies de-allocating temporary objects by putting them in a temporary
workspace and discarding the whole workspace at once.

POOLED ALLOCATION avoids the overhead of variable allocation given a large number of similar
objects, by pre-allocating them as required and maintaining a ‘free list’ of
objects to be reused.

COMPACTION avoids memory fragmentation by moving allocated objects in memory to remove
the fragmentation spaces.

REFERENCE COUNTING manages shared objects by keeping a count of the references to each
shared object, and deleting each object when its  reference count is zero.

GARBAGE COLLECTION manages shared objects by periodically identifying unreferenced objects
and deleting them.

The following diagram shows the relationships between the patterns.

Fixed
Allocation

Variable
Allocation

Reference
Counting

Garbage
Collection

Memory
Discard

Compaction

Application
Switching

Pooled
Allocation

Memory
Allocation

Memory Limit

Partial Failure

Figure 1: Allocation Pattern Relationships

Possibly the key aspect in choosing a pattern is deciding which is more important: minimising
memory size or making memory use predictable.  FIXED ALLOCATION will make memory use
predictable, but generally leaves some memory unused, while VARIABLE ALLOCATION can make
better use of memory but provides less predictability.

See Also
The SMALL DATA STRUCTURES chapter explores patterns to determine the structure of the
allocated objects.  COMPRESSION provides an alternative means to reduce the space occupied by
RAM-resident objects.

The SMALL ARCHITECTURE patterns describe how to plan memory use for the system as a
whole, how memory should be communicated between components, and how to deal with
memory exhaustion using PARTIAL FAILURE.
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Kent Beck’s Smalltalk Best Practice Patterns contain several patterns that describe how
variables should be chosen to minimise object’s lifetimes [Beck 1997].
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Fixed Allocation
Also known As: Static Allocation, Pre-allocation

How can you ensure you will never run out of memory?

• You can’t risk running out of memory.

• You need to predict the amount of memory your system will use exactly.

• You need to allocate memory quickly, or within a given time.

• Allocating memory from the heap has unacceptable overheads

Many applications cannot risk running out of memory. For example the Strap-It-On’s Muon-
based “ET-Speak” communication system must be prepared to accept short messages from
extra-terrestrials at any time; running out of memory while receiving a message could be a
major loss to science. Many other systems have absolute limits to the memory available, and
have no acceptable means for handling out-of-memory situations.  For example, what can an
anaesthetist do about a message from a patient monitor that has run out of internal memory?
When the users have no effective control over memory use, running out of memory can become
a truly fatal program defect.

The usual object-oriented approach is to allocate objects dynamically on the heap whenever
there’s a need for them  [Ingalls 1981].  Indeed many OO languages, including Smalltalk and
Java, allocate all objects from the heap.  Using dynamic allocation, however, always risks
running out of memory.  If every component allocates memory at arbitrary times, how can you
be certain that memory will never run out?

It’s certainly possible to estimate a program’s memory use, when designing a SMALL

ARCHITECTURE, but how can you be sure the estimates accurately reflect the behaviour of the
finished system?  Similarly, you can test the system with arbitrary combinations of data, but
“testing can be used to show the presence of bugs, but never to show their absence” [Dijkstra
1972] so how can you be sure you’ve found the most pathological case?

Dynamic memory allocation  has other problems. Some allocation algorithms can take
unpredictable amounts of time, making them unsuitable for real-time systems.  Virtually all
allocation algorithms need a few extra bytes with each item to store the block size and related
information.  Memory can become fragmented as variable sized memory chunks come and go,
wasting further memory, and to avoid memory leaks you must be careful to deallocate every
unused object.

Therefore: Pre-allocate objects during initialisation.

Allocate fixed amounts of memory to store all the objects and data structures you will need
before the start of processing.  Forbid dynamic memory allocation during the execution of the
program. Implement objects using fixed-sized data structures like arrays or pre-allocated
collection classes.

Design your objects so that you can assign them to new uses without having to invoke their
constructors – the normal approach is to write separate initialisation functions and dummy
constructors.  Alternatively (in C++) keep the allocated memory unused until it’s needed and
construct objects in this memory.

As always you shouldn’t ‘hard code’ the numbers of objects allocated [Plum and Saks 1991] –
even though this will be fixed for any given program run.  Use named constants in code or
system parameters in the runtime system so that the numbers can be adjusted when necessary.
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So, for example, the ET-Speak specification team has agreed that it would be reasonable to
store only the last few messages received and to set a limit to the total storage it can use.  The
ET-Speak programmers allocated a fixed buffer for this storage, and made new incoming
messages overwrite the oldest messages.

Consequences
FIXED ALLOCATION means you can predict the system’s memory use exactly: you can tell how
much memory your program will need at compile time.  The time required for any memory
allocation operation is constant and small.  These two features make this pattern particularly
suitable for real-time applications.

In addition, fixed allocation minimises space overhead for using pointers, and global overhead
for a garbage collector. Using FIXED ALLOCATION reduces programmer effort when there’s no
need to check for allocation failure.  It makes programs easier to test (they either have enough
memory or they don’t) and often makes programs more reliable as there is less to go wrong.

Fixed memory tends to be allocated at the start of the process and never deallocated, so there
will be little external fragmentation.

However:  The largest liability of FIXED ALLOCATION is that to handle expected worst case loads, you
have to allocate more memory than necessary for average loads. This will increase the
program’s memory requirements, as much of the memory is unused due to internal
fragmentation, particularly in systems with many concurrent applications.

To use FIXED ALLOCATION, you have to find ways to limit or defer demands on memory. Often
you will have to limit throughput, so that you never begin a new task until previous tasks have
been completed; and to limit capacity, imposing a fixed maximum size or number of items that
your program will store.  Both these reduce the program’s usability.

Pre-allocating the memory can increase the system’s start-up time – particularly with
programming languages that don’t support static data.

In many cases FIXED ALLOCATION can increase programmer effort; the programmer is forced
to write code to deal with the fixed size limit, and should at least think how to handle the
problem. It can also make it harder to take advantage of more memory should it become
available, reducing the program’s scalability.

Nowadays programs that use fixed size structures are sometimes seen as lower-quality designs,
although this probably says more about fashion than function!

v v v

Implementation
This pattern is straightforward to implement:

• Design objects that can be pre-allocated.

• Allocate all the objects you need a the start of the program.

• Use only the pre-allocated objects, and ensure you don’t ever need (or create) more
objects than you’ve allocated.

1. Designing Fixed Allocation Objects

Objects used for fixed allocation pattern may have to be designed specifically for the purpose.
With fixed allocation, memory is allocated (and constructors invoked) only at the very start of
the system; any destructor will be invoked only when the system terminates (if then).  Rather
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than using constructors and destructors normally, you’ll need to provide extra pseudo-
constructors and pseudo-destructors that configure or release the pre-allocated objects to suit
their use in the program.

class FixedAllocationThing {
public:
    FixedAllocationThing() {}

    Construct() { . . . }
    Destruct()  { . . . }
};

By writing appropriate constructors you can also design classes so that only one (or a certain
number) of instances can be allocated, as described by the SINGLETON pattern [Gamma et al
1995].

2. Pre-allocating Objects

Objects using FIXED ALLOCATION need to be pre-allocated at the start of the program. Some
languages (C++, COBOL, FORTRAN etc.) support fixed allocation directly, so that you can
specify the structure statically at compile time so the memory will be set up correctly as the
program loads.  For example, the following defines some buffers in C++:

struct Buffer { char data[1000]; };
static Buffer AllBuffers[N_BUFFERS_REQUIRED];

Smalltalk permits more sophisticated FIXED ALLOCATION, allowing you to include arbitrarily
complicated allocated object structures into the persistent Smalltalk image loaded whenever an
application starts.

In most other OO languages, you can implement FIXED ALLOCATION by allocating all the
objects you need at the start of the program, calling new as normal.  Once objects are allocated
you should never call new again, but use the pre-existing objects instead, and call their pseudo-
constructors to initialise them as necessary.  To support this pattern, you can design objects so
that their constructors (or calls to new) signal errors if they are called once the pre-allocation
phase has finished.

Pre-allocating objects from the system heap raises the possibility that even this initial allocation
could fail due to insufficient memory?  In this situation there are two reasonable strategies you
can adopt.  Either you can regard this as a fatal error and terminate the program; at this point
termination is usually a safe option, as the program as not yet started running and it’s unlikely
to do much damage.  Alternatively you can write the code so that the program can continue in
the reduced space, as described in the PARTIAL FAILURE pattern.

3. Library Classes

It’s straightforward to avoid allocation for classes you’ve written: just avoid heap operations
such as new and delete.  It’s more difficult to avoid allocation in library classes, unless the
libraries have been designed so that you can override their normal allocation strategies.  For
example, a Java or C++ dynamic vector class will allocate memory whenever it has insufficient
capacity to store an element inserted into it.

Most collection classes separate their size (the number of elements the currently contain) from
their capacity (the number of elements they have allocated space for); a collection’s size must
be less than or equal to its capacity.  To avoid extra allocation, you can pre-allocate containers
with sufficient capacity to meet their needs (see HYPOTH-A-SIZED COLLECTION [Auer and Beck
1996]).  For example, the C++ Standard Template Library precisely defines the circumstances
when containers will allocate memory, also allows you to customise this allocation [Austern
1998].
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Alternatively, you can use EMBEDDED POINTERS to implement relationships between objects,
thus removing the need for library classes to allocate memory beyond your control.

4. Embedded Objects

A very common form of fixed allocation in object-oriented programs is object embedding or
inlining: one object is allocated directly within another object.  For example, a Screen object
owning a Rectangle object might embed the Rectangle in its own data structure rather than
having a pointer to a separate object.

Screen

Rectangle

rather than 

Screen

Rectangle

C++ and Eiffel support inlining directly [Stroupstrup 1997; Meyer 1992]. In other languages
you can inline objects manually by refactoring your program, moving the fields and methods
from the internal object into the main object and rewriting method bodies as necessary to
maintain correctness [Fowler 1999].

Embedding objects removes the time and space overheads required by heap allocation: the main
object and the embedded object are just one object as far as the runtime system is concerned.
The embedded object no longer exists as a separate entity, however, so you cannot change or
replace the embedded object and you cannot use subtype polymorphism (virtual function calls
or message sends).

In languages, such as Java and Smalltalk, that do not support embedded intrinsically you won’t
be able to refer to the embedded object or pass it as an argument to other objects in the system.
For example, you might implement a Rectangle using two point objects as follows:

class Point {
private int x;
private int y;
// methods omitted

}

class Rectangle {
private Point topLeft;
private Point bottomRight;
// etc.

}

But you could avoid the need to allocate the two Point objects by making the two point objects
inline, at the cost of not being able to use the Point objects directly:

class InlinedRectangle {
private int xTopLeft;
private int yTopLeft;
private int xBottomRight;
private int yBottomRight;

   // ...
}

4. Deferring Commitment to Fixed Allocation

Sometimes you need to make the decision to use fixed allocation later in the project, either
because you are unsure it will be worth the effort, or because you used variable allocation but
discovered memory problems during performance testing.   In that case you can use POOLED

ALLOCATION to give a similar interface to variable allocation but from a pre-allocated, fixed-
size pool.
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Example
This example implements a message store as a fixed-size data structure, similar to the circular
buffer used in the ET-speak application.  The message store stores a fixed number of fixed size
messages, overwriting old messages as new messages arrive.

Figure xxx below shows an example of the message store, handling the text of Hamlet’s most
famous soliloquy:

To be, or not to be, that is the question.
Whether 'tis nobler in the mind to suffer the slings and arrows of outrageous
fortune.
Or to take arms against a sea of troubles and by opposing end them.
To die, to sleep - no more;
And by a sleep to say we end the heart-ache and the thousand natural shocks that
flesh is heir to.
Tis a consummation devoutly to be wished.

The figure shows the store just as the most recent message (“tis a consummation… ” is just
about to overwrite the oldest (“To be, or not to be…”).

To be, or not to be, that is the question.

Whether 'tis nobler in the mind to suffer the

Or to take arms against a sea of troubles and

To die, to sleep - no more;

And by a sleep to say we end the heart-ache a

Tis a consummation devoutly to be wished.
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Figure 2: Circular Buffer Message Store

1. Java Implementation

The basic MessageStore class stores a two-dimensional array of messages, and array of
message lengths, the index of the oldest message in the store, and a count of the number of
messages in the store. It’s impossible to avoid memory allocation using the existing versions of
the Java String and StringBuffer classes [Chan et al 1998], so we have implemented the store
using character arrays.  A more robust implementation would create a FixedMemoryString
class to make it easier to manipulate these character arrays, or else modify the StringBuffer
class to allow clients to use it without memory allocation.

class MessageStore
{
    protected char[][] messages;
    protected int[] messageLengths;
    protected int messageSize;
    protected int oldestMessage;
    protected int size;
    public int messageSize() {return messages[0].length;}
    public int capacity() {return messages.length;}

The MessageStore constructor has two initialisation parameters: the number of messages
to store (capacity) and the maximum size of each message (maximumMessageLength).  The
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constructor allocates all the memory ever used; no other method allocates memory either
explicitly or through library operations.

    public MessageStore(int capacity, int messageSize) {
        this.messageSize = messageSize;
        messages = new char[capacity][messageSize];
        messageLengths =  new int[capacity];
        oldestMessage = size = 0;
    }

The most important method adds a new message into the store.  This method silently overwrites
earlier messages received and truncates messages that are longer than the chunkSize. Note
that this message accepts a character array and length as parameters, to avoid the allocation
implicit in using Java Strings.

    public void acceptMessage(char[] msg, int msgLength) {
        int nextMessage = (oldestMessage + size) % capacity();

        messageLengths[nextMessage] = Math.min(msgLength, messageSize);
        System.arraycopy(msg, 0, messages[nextMessage], 0,
                         messageLengths[nextMessage]);
        if (size == capacity()) {
            oldestMessage = (oldestMessage + 1) % capacity();
        } else {
            size++;
        }
    }

The getMessage method retrieve a messages from a message store.  Again, to avoid using the
Java String classes the client must pass in a pre-allocated buffer and the method returns the
length of the string copied into the buffer (see LENDING in the SMALL INTERFACES pattern).

    public int getMessage(int i, char[] destination) {
        int msgIndex = (oldestMessage + i) % capacity();
        System.arraycopy( messages[msgIndex], 0, destination, 0,
                          messageLengths[msgIndex]);
        return messageLengths[msgIndex];
    }

2. C++ Implementation

C++ does less memory allocation than Java, so the same example in C++ looks more
conventional than the Java example. The main difference is that all the messages are stored
inside one large buffer (messageBuffer) rather than as a two-dimensional array.

class MessageStore {
private:
    char* messageBuffer;
    int oldestMessageNumber;
    int nMessagesInStore;
    int maxMessageLength;
    int maxMessagesInStore;

The constructor is straightforward:
public:
    MessageStore(int capacity, int maxMsgLength)
        : maxMessagesInStore( capacity ),
          maxMessageLength( maxMsgLength ),
          oldestMessageNumber( 0 ),
          nMessagesInStore( 0 ) {
            messageBuffer = new char[Capacity() * MessageStructureSize()];
    }

Note that MessageStructureSize() is one byte larger than maxMessageLength to cope with
the null character  ’\0’ on the end of every C++ string:

    int NMessagesInStore()      { return nMessagesInStore; }
    int Capacity()              { return maxMessagesInStore; }
    int MessageStructureSize()  { return maxMessageLength+1; }

The AcceptMessage function copies a new message from a C++ string:



Fixed Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 13

    void AcceptMessage(const char* newMessageText) {
        int nextMessage = (oldestMessageNumber + NMessagesInStore()) % Capacity();
        int newMessageLength = strlen( newMessageText );
        int nBytesToCopy = min(newMessageLength,maxMessageLength)+1;
        strncpy(MessageAt(nextMessage), newMessageText, nBytesToCopy);
        MessageAt(nextMessage)[maxMessageLength] = '\0';
        if (NMessagesInStore() == Capacity()) {
            oldestMessageNumber = (oldestMessageNumber + 1) % Capacity();
        } else {
            nMessagesInStore++;
        }
    }

Accessing a message is easy: we simply return a pointer directly into the message buffer
(‘Borrowing’ – see SMALL INTERFACES).  Calling GetMessage with index 0 returns the oldest
message, 1 the next oldest, etc.

const char* GetMessage(int i) {
        int messageIndex = (oldestMessageNumber + i) % Capacity();
        return MessageAt(messageIndex);
    }

AcceptMessage uses an auxiliary function to locate each message buffer:
private:
    char * MessageAt( int i ) {
        return messageBuffer + i*MessageStructureSize();
    }
};

v v v

Known Uses
Many procedural languages support only fixed allocation, so most FORTRAN and COBOL
programs use only this pattern, allocating large arrays and never calling new or malloc.
Nowadays, most popular languages support VARIABLE ALLOCATION by default, so it can be
hard to revert to FIXED ALLOCATION. Many real-time systems use this pattern too: dynamic
memory allocation and compaction can take an unpredictable amount of time.  The Real-Time
Specification for Java supports Fixed Allocation directly, by allowing objects to be allocated
from an ImmutableMemory area [Bollella et al 2000].

Safety-critical systems frequently use this pattern, since dynamic memory allocation systems
can fail if they run out of memory. Indeed the UK’s Department of Defence regulations for
safety-critical systems permitted only Fixed Allocation, although this has been relaxed recently
in some cases [Matthews 1989, DEF-STAN 00-55 1997]. For example, in a smart mobile
phone the telephone application must always be able to dial the emergency number (112, 999
or 911).  A smart phone’s telephone application typically pre-allocates all the objects it needs
to make such a call – even though all its other memory allocation is dynamic.

Strings based on fixed-size buffers use this pattern.  EPOC, for example, provides a template
class TBuf<int s> representing a string up to s characters in length [Symbian 99].
Programmers must either ensure than no strings can ever be allowed to overflow the buffer, or
else truncate strings where necessary.

See Also
VARIABLE ALLOCATION saves memory by allocating only enough memory to meet immediate
requirements, but requires more effort and overhead to manage and make memory requirements
harder to predict.

POOLED ALLOCATION can provide memory for a larger number of small objects, by allocating
space for a fixed-size number of items from a fixed-sized pool. Pooled allocation can also
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provide the same interface as variable allocation while allocating objects from a fixed-size
memory space.

If you cannot inline whole objects into other objects, you may be able to use EMBEDDED

POINTERS as an alternative.

MEMORY LIMIT can offer a more flexible approach to the same problem by permitting dynamic
allocation while limiting the total memory size allocated to a particular component.

READ-ONLY MEMORY is static by nature and always uses FIXED ALLOCATION.
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Variable Allocation
Also known as: Dynamic Allocation

How can you avoid unused empty space?

• You have varying or unpredictable demands on memory.
• You need to minimise your program’s memory requirements, or
• You need to maximise the amount of data your can store in a fixed amount of memory.
• You can accept the overhead of heap allocation.
• You can handle the situations where memory allocation may fail at any arbitrary point

during the processing.

You have a variable amount of data to store.  Perhaps you don’t know how much data to
store, or how it will be distributed between the classes and objects in your system.

For example, the Strap-It-On’s famous Word-O-Matic word-processor stores part of its
current document in main memory.  The amount of memory this will require is unpredictable,
because it depends upon the size of the document, the screen size resolution, and the fonts and
paragraph formats selected by the user.  To support a voice output feature beloved by the
marketing department, Word-O-Matic also saves the vocal emotions for each paragraph; some
documents use no emotions, but others require the complete emotional pantechnicon: joy,
anger, passion, despair, apathy. It would be very difficult indeed to pre-allocate suitable data
structures to handle Word-O-Matic’s requirements, because this would require balancing
memory between text, formats, fonts, emotions, and everything else. Whatever choices you
made, there would still be a large amount of memory wasted most of the time.

Writing a general-purpose library is even more complex than writing an application, because
you can’t make assumptions about the nature of your clients.  Some clients may have fixed and
limited demands; others might legitimately require much more, or have needs that vary
enormously from moment to moment.

So how can you support flexible systems while minimising their use of memory?

Therefore: Allocate and deallocate variable-sized objects as and when you need them.

Store the data in different kinds of objects, as appropriate, and allocate and free them
dynamically as required.  Implement the objects using dynamic structures such as linked lists,
variable-length collections and trees.

Ensure objects that are no longer needed are returned for reuse, either by making explicit calls
to release the memory, or by clearing references so that objects will be recovered by
REFERENCE COUNTING or a GARBAGE COLLECTOR.

For example, Word-O-Matic dynamically requests memory from the system to store the user’s
documents. To produce voice output Word-O-Matic just requests more memory.  When it no
longer needs the memory (say because the user closes a document) the program releases the
memory back to the Strap-It-On system for other applications to use.  If Word-O-Matic runs
out of memory, it suggests the user free up memory by closing another application.

Consequences
Variable-size structures avoid unused empty space, thus reducing memory requirements
overall and generally increasing design quality.  Because the program does not have
assumptions about the amount of memory built into it directly, it is more likely to be scaleable,
able to take advantage of more memory should it become available.
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A heap makes it easier to define interfaces between components; one component may create
allocate objects and pass them to another, leaving the responsibility for freeing memory to the
second.  This makes the system easier to program, improving the design quality and making it
easier to maintain, because you can easily create new objects or new fields in objects without
affecting the rest of the allocation in the system.

Allocating memory throughout a program’s execution (rather than all at the beginning) can
decrease a program’s start-up time.

However:  There will be a memory overhead to manage the dynamically allocated memory; typically a
two word header for every allocated block. Memory allocation and deallocation require
processor time, and this cost can be global to the language runtime system, the operating
system or even, in the case of the ill-fated Intel 432, in hardware.  The memory required for
typical and worse case scenarios can become hard to predict.  Because the objects supplied by
the heap are of varying size, heaps tend to get fragmented, adding to the memory overhead and
unpredictability,

Furthermore, you must be prepared to handle the situation where memory runs out.  This may
happen unpredictably at any point where memory is allocated; handling it adds additional
complexity to the code and requires additional programmer effort to manage, and time and
energy to test properly.  Finally, of couse, it’s impossible to use variable allocation in read-
only memory.

v v v

Implementation
Using this pattern is trivial in most object-oriented languages; it’s what you do by default.
Every OO language provides a mechanism to create new objects in heap memory, and another
mechanism (explicit or implicit) to return the memory to the heap, usually invoking an object
cleanup mechanism at the same time [Ingalls 1981].

1. Deleting Objects

It’s not just enough to create new objects, you also have to recycle the memory they occupy
when they are no longer required.  Failing to dispose of unused objects causes memory leaks,
one of the most common kinds of bugs in object-oriented programming. While a workstation or
desktop PC may be able to tolerate a certainly amount of memory leakage, systems with less
memory must conserve memory more carefully.

There are two main kinds of techniques for managing memory: manual and automatic. The
manual technique is usually called object deletion; example mechanisms are C++’s delete
keyword and C’s free library call.  The object is returned to free memory immediately during
the operation.  The main problem with manual memory management is it is easy to omit to
delete objects. Forgetting to delete an object results in a memory leak.  A more dramatic
problem is to delete an object that is still in use; this can cause your system to crash, especially
if the memory is then reallocated to some other object.

In contrast, automatic memory management techniques like REFERENCE COUNTING and
GARBAGE COLLECTION do not require programs to delete objects directly; rather they work out
‘automatically’ which objects can be deleted, by determining which objects are no longer used
in the program.  This may happen some time after the object has been discarded. Automatic
management prevents the bugs caused by deleting objects that are still in use, since an object
still referenced will never be deleted. They also simplify the code required to deal with memory
management.  Unfortunately, however, it’s quite common to have collections, or static
variables, still containing references to objects that are no longer actually required.  Automatic
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techniques can’t delete these objects, so they remain – they are memory leaks.   It remains the
programmer’s responsibility to ensure this doesn’t happen.

2. Signalling Allocation Failure

Variable allocation is flexible and dynamic, so it can tune a systems memory allocation to suit
the instantaneous demands of the program.  Unfortunately because it is dynamic the program’s
memory use is unpredictable, and it can fail if the system has insufficient memory to meet a
program’s request.  Allocation failures need to be communicated to the program making the
request.

2.1. Error Codes.  Allocation functions (such as new) to return an error code if allocation
fails.  This is easy to implement:  C’s malloc for example, returns a null pointer on failure.
This approach requires programmer discipline and leads to clumsy application code, since you
must check for allocation failure every time you allocate some memory..  Furthermore, every
component interface must specify mechanisms to signal that allocation has failed.  In practice,
this approach, although simple, should be used as a last resort.

2.2. Exceptions.  Far easier for the programmer allocating memory is to signal failure using an
exception..  The main benefit of exceptions is that the special case of allocation failure can be
handled separately from the main body of the application, while still ensuring the allocation
failure does not go unnoticed.  Support for exceptions can increase code size, however, and
make it more difficult to implement code in intermediate functions that must release resources
as a result of the exception.

2.3. Terminating the program.  Ignoring allocation failure altogether is the simplest possible
approach.  If failure does happen, therefore, the system can try to notify the user as
appropriately, then abort.  For example many MS Windows put up a dialog box on heap
failure, then terminate.  This approach is clearly only suitable when there is significantly more
memory available than the application is likely to need —  in other words, when you are not in a
memory limited environment. Aborting the program is acceptable in the one case where you are
using the system heap to implement FIXED ALLOCATION  by providing a  fixed amount of
memory before your program has begun executing, because you cannot tolerate failure once the
program has actually started running.

3. Avoiding Fragmentation

Fragmentation can be a significant problem with variable allocation from a heap for some
applications. Often, the best way to address fragmentation is not to worry about it until you
suspect that it is affecting your program’s performance.  You can detect a problem by
comparing the amount of memory allocated to useful objects with the total memory available to
the system (see the MEMORY LIMIT pattern for a way of counting the total memory allocated to
objects). Memory that is not in use but cannot be allocated may be due to fragmentation.

3.1. Variable Sized Allocation. Avoid interspersing allocations of very large and small
objects.   For example, a small object allocated between two large objects that are then freed
will prevent the heap manager combining the two large empty spaces, making it difficult to
allocate further larger blocks.  You can address this using having two or more heaps for
different sized objects: Microsoft C++, for example, uses one separate heap for allocations of
less than about 200 bytes, and a second heap for all other allocations [Microsoft 97].
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1

The Memory Manager cannot combine the two large free
blocks due to the small block between

Allocated Memory

Free Memory

3.2. Transient Objects. Operating systems can often reclaim unused memory from the end of
the heap, but not from the middle. If you have a transient need for a very large object, avoid
allocating further objects until you’ve de-allocated it.  Otherwise, you may leave a very large
‘hole’ in the heap, which never gets filled and cannot be returned to the wider system until your
application terminates.  For the same reason, be careful of reallocating buffers to increase their
size; this leave the memory allocated to the old buffer unused in the middle of the heap.  Use
the MEMORY DISCARD pattern to provide specialised allocation for transient objects,

This small block allocated at the end of the heap prevents the
Operating system reclaiming all this free memory

2

3.3. Grouping Allocations. Try to keep related allocations and de-allocations together, in
preference to interspersing them with unrelated heap operations.  This way, the allocations are
likely to be contiguous, and the de-allocations will free up all of the contiguous space, creating
a large contiguous area for reallocation.

CBA

Blocks A, B, and C have been allocated and deleted.
However the two blocks interspersed allocated during
allocation or during deletion now prevent the Memory
Manager from recombining the three blocks.

3

4. Standard Allocation Sizes

Normally applications tell the heap the sizes of the objects they need to allocate, and the heap
allocates memory to store those objects.  Another way around fragmentation is for the heap to
specify the sizes of memory blocks available to the application.  This works if you can afford
to waste unused memory inside small blocks (internal fragmentation), if all the objects you
allocated have the same size (POOLED ALLOCATION) or the application can support non-
contiguous allocation.  For example, if you can use 10 1K memory blocks rather then one 10K
block, the heap will be much more likely to be able to meet your requirements when memory is
low.

5. Implementing a Heap

A good implementation of a heap has to solve a number of difficult problems:

• How to represent an allocated cell.
• How to manage the ‘free list’ of blocks of deallocated memory
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• How to ensure requests for new blocks reuse a suitable free block.
• How to prevent the heap becoming fragmented into smaller and smaller blocks of free

memory combining adjacent free blocks.

Allocated MemoryFree Memory

A B

Can the heap combine blocks A and B?

Knuth [1997] and Jones and Lins [1996] describe many implementations of memory heaps and
garbage collectors that address these problems; Goldberg and Robson [1983] present a detailed
example in Smalltalk.   In practice, however, you’ll almost always be better off buying or
reusing an existing heap implementation.  Libraries for low-level memory management, such as
Doug Lea’s malloc [Lea 2000], are readily available.

Example
We can implement a Message Store using VARIABLE ALLOCATION from the Java heap.  The
implementation of this version is much simpler, even though we’ve kept the strange character-
array interface for compatibility with the FIXED ALLOCATION version.  Because we’re able to
allocate objects on the heap at any time, we can use library routines that allocate heap memory,
and we can rely on the Java built-in memory failure exceptions and garbage collection to deal
with resource limitations and object deletion.

The HeapMessageStore class simply uses a Java vector to store messages:
class HeapMessageStore  {
    protected Vector messages = new Vector();

To accept a message, we simply add a string into the vector.
    public void acceptMessage(char[] msg, int msgLength) {
        messages.addElement(new String(msg, 0, msgLength));
    }

Of course, these allocations could fail if there is not enough memory, propagating exceptions
into the client code.

To return a message, we can copy the string into the array provided by the client, keeping the
same interface as the FIXED ALLOCATION version

    public int getMessage(int i, char[] destination) {
        String result = (String) messages.elementAt(i);
        result.getChars(0, result.length(), destination, 0);
        return result.length();
    }

Or more simply we could just return the string —  if the rest of the system permitted, we could
add messages by storing a string directly as well:

    public String getMessage(int i) {
        return (String) messages.elementAt(i);
    }

Finally, we now need to provide a way for clients to delete messages from the store, since they
are no longer overwritten automatically:

public void deleteMessage(int i) {
        messages.removeElementAt(i);
    };
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This relies on Java’s GARBAGE COLLECTION to clean up the String object and any objects in the
internal implementation of the Vector.

v v v

Known Uses
Virtually all object-oriented programming languages support this pattern by encouraging the
use of dynamically allocated memory and by providing libraries based on variable allocation.
The vast majority of C++, Smalltalk, and Java applications use this pattern by default.  Other
languages that encourage dynamic memory allocation also encourage this pattern; hence most
C, Pascal, and Lisp programs use this pattern too.  Most environments provide dynamically-
allocated strings, which use variable-length data structures, and dynamic languages like
Smalltalk and Java provide built in garbage collectors to manage dynamically varying storage
requirements.

See Also
COMPACTION can reduce the memory overhead from fragmentation, usually at a cost in time
performance.  If the memory runs out, the program should normally suffer only a PARTIAL

FAILURE.  Using FIXED ALLOCATION avoids the overhead, unpredictability and complexity of a
variable sized structure at the cost of often allocating more memory than is actually required.
MULTIPLE REPRESENTATIONS can switch between different variable-sized structures for
particular cases.  You can limit the memory allocated to specific components by imposing a
MEMORY LIMIT.

The HYPOTH-A-SIZE collection pattern optimises allocation of variable-sized structures [Auer
and Beck 1996].

Exceptional C++ [Sutter 2000], Advanced C++ [Coplien 1994], and More Effective C++
[Meyers 1996] describe various programming techniques to ensure objects are deleted correctly
in C++.

Doug Lea’s describes the design of his memory allocator, malloc, in A Memory Allocator
[Lea 2000]. Many versions of the Unix system use this allocator, including Linux.  Paul
Wilson and Mark Johnston have conducted several surveys of the performance of memory that
demonstrate standard allocation algorithms (such as Doug Lea’s) are suitable most programs
[Johnstone and Wilson 1998].

Lycklama [1999] describes several situations where unused Java objects will not be deleted,
and techniques for avoiding them.
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Memory Discard
Also known as: Stack Allocation, Scratchpad.

How can you allocate temporary objects?

• You are doing OO programming with limited memory
• You need transient objects that all last only for a well-defined time.
• You don’t want temporary allocations to interfere with the allocation of permanent

objects.
• You don’t want the complexity of implementing garbage collection or the overhead of

heap allocation.
• These objects don’t own non-memory resources; or have simple mechanisms to free

them

Dynamic allocation techniques can impose significant overheads.  For example, the designers
of the Strap-It-On’s ‘Back Seat Jet Pilot’ application fondly hoped to connect the Strap-It-On
to the main control system of a commercial jet plane, allowing passengers to take over in an
emergency!  The method that calculates the control parameters uses a large number of
temporary objects and must execute about fifty times a second.  If the objects were allocated
from the Strap-It-On’s system heap, the cycle time would be too slow, and the jet would crash
immediately.

Similar (but less farfetched, perhaps) situations are common in programming.  You often need
a set of transient objects with lifetimes that are closely linked to the execution of the code; the
most common example being objects that last for the duration of a method invocation.

FIXED ALLOCATION is unsuitable for temporary objects because, by definition, it allocates space
permanently and requires you to know exactly which objects will be required in advance.
VARIABLE ALLOCATION isn’t suitable for allocating such transient objects either, as it can be
relatively slow and lots of temporary objects can fragment the heap.

Therefore: Allocate objects from a temporary workspace and discard it on completion.

Use a program stack frame, a temporary heap, or a pre-allocated area of memory as a
temporary workspace to store transient objects.  Allocate objects from this memory area by
incrementing an appropriate pointer.  Deallocate all the objects simultaneously by discarding or
resetting the memory area.  If necessary keep a list of other resources owned by the transient
objects and release these explicitly.

For example, the Back Seat Jet Pilot application pre-allocates a buffer (FIXED ALLOCATION),
and allocates each temporary object by incrementing a pointer within this buffer.   On return
from the calculation method, the pointer is reset to the start of the buffer, effectively discarding
all of the temporary objects.  This made the calculation of the jet plane controls quite fast
enough, so that when the Aviation Authorities banned Back Seat Jet Pilot on safety grounds the
designers were triumphantly able to convert it to create the best-selling Strap-Jet Flight
Simulator.

Consequences
Both memory allocation and de-allocation are very fast, improving the system’s time
performance.  The time required is fixed, making it suitable for real-time systems.  Initialising
the memory area is fast, so start-up time costs are minimal.  The temporary workspace doesn’t
last long, which avoids fragmentation.

The basic pattern is easy to program, requiring little programmer effort.
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By quarantining transient objects from other memory allocations, this pattern can make the
memory consumption of the whole system more predictable, ensuring transient objects remain
a strictly local affair.

However:  Programmer Discipline is required to allocate transient objects from the temporary
workspace, and to manage any external resources owned by the objects, and to ensure the
transient objects are not used after the workspace has been discarded or recycled.  In
particular, if the temporary objects use objects from external libraries, these may allocate
normal heap memory, or operating system handles.

Because this pattern increases the program’s complexity, it also increases its testing cost.

Languages that rely on automatic memory management generally do not support the MEMORY

DISCARD pattern directly: the point of automatic memory management is that it discards the
objects for you.

v v v

Implementation
Here are some issues to consider when implementing MEMORY DISCARD.

1. Stack Allocation

In languages that support it, such as C++ and Pascal, stack allocation is so common that we
take it for granted; generally, Stack Allocation is the most common form of Memory Discard.
Objects are allocated on the program stack for a method or function call, and deallocated when
the call returns.  This very easy to program, but supports only objects with the exact lifetime of
the method.

Some C and C++ environments even allow variable-sized allocation on the stack.  Microsoft
C++, for example, supports _alloca to allocate memory that lasts only till the end of the
function [Microsoft 97]

void* someMemory = _alloca( 100 );  // Allocates 100 bytes on the stack

GNU G++ has a similar facility [Stallman 1999]. These functions are not standard, however,
and no form of stack allocation is possible in standard Java or Smalltalk.

2. Temporary Heaps

You can allocate some memory permanently (FIXED ALLOCATION) or temporarily (VARIABLE

ALLOCATION), and create your objects in this area. If you will delete the transient objects on
mass when you delete the whole workspace, you can allocate objects simply by increasing a
pointer into the temporary workspace: this should be almost as efficient as stack allocation.
You can then recycle all the objects in the heap by resetting the pointer back to the start of the
workspace, or just discard the whole heap when you are done.

A temporary heap is more difficult to implement than stack allocation, but has the advantage
that you can control the lifetime and size of the allocated area directly.

2.1. Using operating system heaps in C++.  Although there are no standard C++ functions
that support more than one heap, many environments provide vendor-specific APIs to multiple
heaps.  EPOC, for example, provides the following functions to support temporary heaps
[Symbian99]:
UserHeap::ChunkHeap Creates a heap from the system memory pool
Rheap::SwitchHeap Switches heaps, so that all future allocations for this

thread comes from the heap passed as a parameter.
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Rheap::FreeAll Efficiently deletes all objects allocated in a heap.
Rheap::Close Destroys a heap

MS Windows CE and other Windows variants provide the functions [Microsoft 97]:
HeapCreate Creates a heap from the system memory pool.
HeapAlloc, HeapFree Allocate and releases memory from a heap passed as

a parameter
HeapDestroy Destroys a heap

PalmOs is designed for much smaller heaps than either EPOC or CE, and doesn’t encourage
multiple dynamic heaps.  Of course, Palm applications do APPLICATION SWITCHING, so discard
all their dynamic program data regularly.

2.2. Using C++ placement new.  If you implement your own C++ heap or use the Windows
CE heap functions, you cannot use the standard version of operator new, because it allocates
memory from the default heap.  C++ includes the placement new operator that constructs an
object within some memory that you supply [Stroustrup 1997].  You can use the placement
new operator with any public constructor:

    void* allocatedMemory = HeapAlloc( temporaryHeap, sizeof( MyClass ) );
    MyClass* pMyClass = new( allocatedMemory ) MyClass;

Placement new is usually provided as part of the C++ standard library, but if not it’s trivial to
implement:

void* operator new( size_t /*heapSizeInBytes*/, void* memorySpace ) {
    return memorySpace;
}

3. Releasing resources held by transient objects

Transient objects can own resources such as heap memory or external system objects (e.g. file
or window handles).  You need to ensure that these resources are released when the temporary
objects are destroyed.  C++ guarantees to invoke destructors for all stack-allocated objects
whenever a C++ function exits, either normally or via an exception. In C++ ‘resource de-
allocation is finalisation’ [Stroustrup 1995] so you should release resources in the destructor.
The C++ standard l library includes the auto_ptr class that mimics a pointer, but deletes the
object it points to when it is itself destructed, unless the object has been released first.  (See
PARTIAL FAILURE for more discussion of auto_ptr).

It’s much more complex to releasing resources held by objects in a temporary heap, because
the heap generally does not know the classes of the objects that are stored within it. Efficient
heap designs do not even store the number of objects they contains, but simply the size of the
heap and a pointer to the next free location.

If you do keep a list of every object in a temporary heap, and can arrange that they all share a
common base class, you can invoke the destructor of each object explicitly:

object->~BaseClass();

But it’s usually simpler to ensure that objects in temporary heaps do not hold external
resources.

When resources can be SHARED, so that there may be other references to the resources in
addition to the transient ones, simple deallocation from the destructor may not be enough, and
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you may need to use REFERENCE COUNTING or even GARBAGE COLLECTION to manage the
resources.

4.  Dangling Pointers

You have to be very careful about returning references to discardable objects.  These
references will be invalid once the workspace has been discarded. Accessing objects via such
‘dangling pointers’ can have unpredictable results, especially if the memory that was used for
the temporary workspace is now being used for some other purpose, and it takes care and
programmer discipline to avoid this problem.

Example
This C++ example implements a temporary heap.  The heap memory itself uses FIXED

ALLOCATION; it’s allocated when during the heap object initialisation and lasts as long as the
heap object.  It supports a Reset() function that discards all the objects within it.  The heap
takes its memory from the system-wide heap so that its size can be configured during
initialisation.

Using such a heap is straightforward, with the help of another overloaded operator new.  For
example the following creates a 1000-byte heap, allocates an object on it, then discards the
object.  The heap will also be discarded when theHeap goes out of scope.  Note that the class
IntermediateCalculationResult may not have a destructor.

TemporaryHeap theHeap( 1000 );
IntermediateCalculationResult* p =
                new( theHeap ) IntermediateCalculationResult;
theHeap.Reset();

The overloaded operator new is, again, simple:
void * operator new ( size_t heapSizeInBytes, TemporaryHeap& theHeap ) {
    return theHeap.Allocate( heapSizeInBytes );
}

1. TemporaryHeap Implementation

The TemporaryHeap class records the size of the heap, the amount of memory currently
allocated, and keeps a pointer (heapMemory) to that memory.

class TemporaryHeap {
private:
    size_t nBytesAllocated;
    size_t heapSizeInBytes;
    char* heapMemory;

The constructor and destructor for the heap class are straightforward; any allocation exceptions
will percolate up to the client:

TemporaryHeap::TemporaryHeap( size_t heapSize)
    : heapSizeInBytes( heapSize )  {
    heapMemory = new char[heapSizeInBytes];
    Reset();
}

TemporaryHeap::~TemporaryHeap() {
    delete[] heapMemory;
}

The function to allocate memory from the TemporaryHeap increases a count and throws the
bad_alloc exception if the heap is full.
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void * TemporaryHeap::Allocate(size_t sizeOfObject) {
    if (nBytesAllocated + sizeOfObject >= heapSizeInBytes)
        throw bad_alloc();

    void *allocatedCell = heapMemory + nBytesAllocated;
    nBytesAllocated += sizeOfObject;
    return allocatedCell;
}

The Reset function simply resets the allocation count.
void TemporaryHeap::Reset() {
    nBytesAllocated = 0;
}

v v v

Known Uses
All object-oriented languages use stack allocation for function return addresses and for passing
parameters. C++ and Eiffel also allow programmers to allocate temporary objects on the stack
[Stroustrup 1997, Meyer 1992]. The Real-time Specification for Java will support Memory
Discard by allowing programmers to create ScopedMemory areas that are discarded when they
are no longer accessible by real-time threads [Bollella et al 2000].

In Microsoft Windows CE, you can create a separate heap, allocate objects within that heap,
and then delete the separate heap, discarding every object inside it [Boling 1998]. PalmOS
discards all memory chunks owned by an application when it application exits [Palm 2000].

Recently, some Symbian developers were porting an existing handwriting recognition package
to EPOC.  For performance reasons it had to run in the Window Server, a process that must
never terminate.  Unfortunately the implementation, though otherwise good, contained small
memory leaks – particularly following memory exhaustion.   Their solution was to run the
recognition software using a separate heap, and to discard the heap when it got too large.

‘Regions’ are a compiler technique for allocating transient objects that last rather longer than
stack frames.  Dataflow analysis identifies objects to place in transient regions; the regions are
allocated from a stack that is independent of the control stack [Tofte 1998].

The ‘Generational Copying’ GARBAGE COLLECTORS [Jones and Lins 1996, Ungar 1984] used in
modern Smalltalk and Java systems provide a form of memory discard.  These collectors
allocate new objects in a separate memory area (the “Eden space”). When this space becomes
full, an ‘angel with a flaming sword’ copies any objects inside it that are still in use out of Eden
and into a more permanent memory area. The Eden space is then reset to be empty, discarding
all the unused objects.  Successively larger and longer-lived memory spaces can be collected
using the same technique, each time promoting objects up through a cycle of reincarnation,
until permanent objects reach the promised land that is never garbage collected, where objects
live for ever.

See Also
APPLICATION SWITCHING is a more coarse-grained alternative, using process termination to
discard both heap and executable code. DATA FILES often uses stack allocation or a temporary
workspace to process each item in turn from secondary storage. The discarded memory area
may use either FIXED ALLOCATION, or VARIABLE ALLOCATION.

POOLED ALLOCATION is similar to MEMORY DISCARD, in that both patterns allocate a large
block of memory and then apportion it between smaller objects; POOLED ALLOCATION,
however, supports de-allocation.
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Pooled Allocation
 Also Known As: Memory Pool

 How can you allocate a large number of similar objects?

• Your system needs a large number of small objects

• The objects are all roughly the same size.

• The objects need to be allocated and released dynamically.

• You don’t, can’t, aren’t allowed to, or won’t used VARIABLE ALLOCATION

• Allocating each object individually imposes a large overhead for object headers and
risks fragmentation.

Some applications use a large number of similar objects, and allocate and deallocate them
often.  For example, Strap-It-On’s ‘Alien Invasion’ game needs to record the positions and
states of lots of graphical sprites that represent invading aliens, asteroids, and strategic missiles
fired by the players.  You could use VARIABLE ALLOCATION to allocate these objects, but
typical memory managers store object headers with every object; for small objects these
headers can double the program’s memory requirements. In addition, allocating and
deallocating small objects from a shared heap risks fragmentation and increases the time
overhead of managing large numbers of dynamic objects.

You could consider using the FLYWEIGHT pattern [Gamma+ 1995], but this does not help with
managing data that is intrinsic to objects themselves.  MEMORY COMPACTION can reduce
fragmentation but imposes extra overheads in memory and time performance.  So how can you
manage large numbers of small objects?

Therefore: Pre-allocate a pool of objects, and recycle unused objects.

Pre-allocate enough memory to hold a large number of objects at the start of your program,
typically by using FIXED ALLOCATION to create an array of the objects.  This array becomes a
‘pool’ of unused, uninitialised, objects. When the application needs a new object, choose an
unused object from the pool and pass it to the program to initialise and use it.  When the
application is finished with the object, return the object to the pool.

[In Use]

[In Use]

[In Use]

[In Use]

Free
Pool

Client
App.

In practice objects do not have to be physically removed and reinserted into the pool (this will
be difficult in languages like C++ when the objects are stored directly within the pool array
using FIXED ALLOCATION). Instead you’ll need to track which pool objects are currently in use
and which are free. A linked list (using EMBEDDED POINTERS) of the free objects will often
suffice.
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For example Alien Invasion uses a pool of sprite objects to support the Alien Invasion game.
This pool is allocated at the start of the program and holds enough objects to represent all the
sprites that can be displayed on the Strap-It-On’s high-resolution 2-inch screen.  No extra
memory is required for each object by the memory manager or runtime system.  All unused
sprites are kept on a free list, so a new sprite can be allocated or deallocated using just two
assignments.

Consequence
By reducing memory used for object headers and lots to fragmentation, pooled allocation lets
you store more objects in less memory, reducing the memory requirements of the system as a
whole.  Simultaneously, by allocating a fixed-sized pool to hold all these objects, you can
predict the amount of memory required exactly. Objects allocated from a pool will be close
together in memory, reducing need for PAGING overhead in a paged system.  Memory allocation
and deallocation is fast, increasing time performance and real-time responsiveness.

However:  The objects allocated to the pool are never returned to the heap, so the memory
isn’t available to other parts of the application, potentially increasing overall memory
requirements.  It takes programmer effort to implement the pool, programmer discipline to
use it correctly, and further effort to test that it all works.   A fixed-size pool can decrease your
program's scalability, making it harder to take advantage of more memory should it become
available, and also reduce your maintainability, by making it harder to subclass pooled
objects.  Preallocating a pool can increase your system's startup time.

v v v

Implementation
POOLED ALLOCATION combines features of FIXED ALLOCATION and VARIABLE ALLOCATION.
The pool itself is typically statically allocated (so the overall memory consumption is
predictable) but objects within the pool are allocated dynamically.  Like FIXED ALLOCATION,
the pooled objects are actually preallocated and have to be initialised before they are used
(independently of their constructors). Like VARIABLE ALLOCATION, requests to allocate new
objects may be denied if the pool is empty, so you have to handle memory exhaustion; and you
have to take care to release unused objects back to the pool.

Here are some issues to consider when using POOLED ALLOCATION:

1. Reducing Memory Overheads

One reason to use Pooled Allocation is to reduce the amount of memory required for booking in
a variable allocation memory manager: pooled allocation needs to keep less information about
every individual object allocated, because each objects typically the same size and often the
same type. By comparing memory manager overheads with the objects' size, you can evaluate
if pooled allocation makes sense in your application. Removing a two-word header from a
three-word object is probably worthwhile, but removing a two-word header from a two kilobyte
objects is not (unless there are millions of these objects and memory is very scarce).

2. Variable Sized Objects

Pooled allocation works best when every object in the pool has the same size. In practice, this
can mean that every object in the pool should be the same class, but this greatly reduces the
flexibility of a program’s design.

If the sizes of objects you need to allocate are similar, although not exactly the same, you can
build a pool capable of storing the largest size of object.  This will suffer from internal
fragmentation, wasting memory when smaller objects are allocated in a larger space, but this
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fragmentation is bounded by the size of each pool entry (unlike external fragmentation, which
can eventually consume a large proportion of a heap).

Alternatively, you can use a separate pool for each class of objects you need to allocate.  Per-
class pools can further reduce memory overheads because you can determine the pool to which
an object belongs (and thus its class) by inspecting the object’s memory address. This means
that you do not need to store a class pointer [Goldberg and Robson 1983] or vtbl pointer [Ellis
and Stroustrup 1980] with every object, rather one pointer can be shared by every object in the
pool.  A per-class pool is called “a Big Bag of Pages” or “BiBoP” because it is typically
allocated contiguous memory pages so that an object’s pool (and thus class) can be determined
by fast bit manipulations on its address.  [Steele 1977, Dybvig 1994].

3. Variable Size Pools

If your pool is a FIXED ALLOCATION you have determine how big the pool should be before your
program starts running, and you have no option but to fail a request for a new object when the
pool is empty. Alternatively, when the pool is empty you could use VARIABLE ALLOCATION and
request more memory from the system.  This has the advantage that pooled object allocation
will not fail when there is abundant memory in the system, but of course it makes the
program’s memory use more difficult to predict.   Flexible pools can provide guaranteed
performance when memory is low (from the FIXED ALLOCATION portion) while offering extra
performance when resources are available.

4. Making Pools Transparent

Sometimes it can be useful for objects that use POOLED ALLOCATION to present the same
interface as VARIABLE ALLOCATION. For example, you could need to introduce pooled
allocation into a program that uses variable allocation by default (because the programming
language uses variable allocation by default).

In C++ this is easy to implement; you can overload operator new to allocate an object from a
pool, and operator delete to return it. In Smalltalk and Java this approach doesn’t work so
seamlessly: in Smalltalk you can override object creation, but in Java you cannot reliably
override either creation or deletion. In these languages you will need to modify clients to
allocate and release objects explicitly.

C++ has a further advantage over more strongly typed languages such a Java.  Because we can
address each instance as an area of raw memory, we can reuse the objects differently when the
client does not need them.  In particular, as the picture below shows, we can reuse the first few
bytes of each element as an embedded pointer to keep a free list of unallocated objects.

Free
list

Client
using
items
from
the
pool

Figure 3: Reusing object memory to implement a free list
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The following code uses this technique to implement a C++ class: TreeNode, representing part
of a tree data structure. Clients use instances of the class as though allocated from the system
heap:

    TreeNode* node = new TreeNode;
    delete node;

4.1 Implementation.   Internally the class uses a static pointer, freeList, to the start of the
free list.  Each TreeNode object is small so we don’t want the overhead of heap allocation for
each one separately.  Instead we allocate them in blocks, of size BLOCK_SIZE:

class TreeNode {
private:
    enum { BLOCK_SIZE = 10 };
    static void* freeList;

    TreeNode* leftNode;
    TreeNode* rightNode;
    void* data;
// etc.
};

(The implementation of a TreeNode to give a tree structure using these data members is left as
an exercise for the reader!)

TreeNode has one static function to allocate new objects when required and add them all to the
free list:

/* static */
void* TreeNode::freeList=0;

/* static */
void TreeNode::IncreasePool() {
    char* node = new char[BLOCK_SIZE * sizeof(TreeNode)];
    for( int i=0; i<BLOCK_SIZE; i++)
        AddToFreeList( node + (i * sizeof(TreeNode)) );
}

To make the POOLED ALLOCATION look like VARIABLE ALLOCATION, TreeNode must implement
the operators new and delete.  There’s one caveat for these implementations: any derived
class will inherit the same implementation.  So, in operator new, we must check the size of the
object being allocated to ensure that we only use this implementation for objects of the correct
size, otherwise we allocate the object from the system heap.

void* TreeNode::operator new(size_t bytesToAllocate) {
    if( bytesToAllocate != sizeof(TreeNode) )
        return ::operator new( bytesToAllocate );
    if( freeList == 0)
        IncreasePool();
    void *node = freeList;
    freeList = *((void**)node);
    return node;
}

Operator delete is straightforward (or as straightforward as these operators can ever be). We
check that the object is a suitable size to be allocated from the pool, and if so, return it to the
free list; otherwise we return it to the heap.

void TreeNode::operator delete( void* node, size_t bytesToFree ) {
    if( bytesToFree != sizeof(TreeNode) )
        ::operator delete( node );
    else
        AddToFreeList( node );
}

AddToFreeList uses the first few bytes of the object as the list pointer:
void TreeNode::AddToFreeList( void* node ) {
    *((void**)node) = freeList;
    freeList = node;
}
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Example
As a contrast to the C++ and Java syntax, here we present a simple Smalltalk implementation
of pooled allocation.  The class allocates a fixed number of pooled objects when the system
starts up and stores them in the class-side array Pool.  Objects are allocated from the Pool as
if it were a stack; the class variable PoolTopObject keeps track of the top of the stack.

Object subclass: #PooledObject
  instanceVariableNames: ''
  classVariableNames:
    'Pool PoolTopObject'
  poolDictionaries: ''

The class method buildPool initialises all the objects in the pool, and need be called only once
on initialisation of the system.  Unlike other Smalltalk class initialisation functions, this isn’t
really a ‘compile-time-only’ function; a previous execution of the system could have left
objects in the pool, so we’ll need to call this function to restore the pool to its initial state.

PooledObject class

buildPool: poolSize
        "Puts poolSize elements in the pool"
    | newObject |
    Pool := Array new: poolSize.
    (1 to: poolSize) do:
          [ :i | Pool at: i put: PooledObject create. ].
    PoolTopObject = 1.
    ^ Pool

We need a create class method that buildPool can call to create new instances.
create
        "Allocates an uninitialised instance of this object"
    ^ super new

We can then define the PooledObject class new method to remove and return the object at
the top of the pool.

new
    "Allocate a new object from the Pool"
   | newObject |
   newObject := Pool at: PoolTopObject.
   Pool at: PoolTopObject put: nil.
   PoolTopObject := PoolTopObject + 1.
   ^ newObject

Clients of the pooled object must send the free message to a pooled object when they no
longer need it. This requires more discipline than standard Smalltalk programming, which use
garbage collection or reference counting to recycle unused objects automatically.

free
   "Restores myself to the pool"
   self class free: self

The real work of recycling an object is done by the class method free: that pushes an object
back into the pool.

free: aPooledObject
   "Return a pooled object to the pool"
   PoolTopObject := PoolTopObject – 1.
   Pool at: PoolTopObject put: aPooledObject.

v v v

Known Uses
Many operating systems use pooled allocation, and provide parameters administrators can set
to control the size of the pools for various operating system resources, such as IO buffers,
processes, and file handles. VMS, for example, pre-allocates these into fixed size pools, and
allocates each type of objects from the corresponding pool. [Kenah and Bate 1984].  UNIX
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uses a fixed size pool of process objects (the process table) [Goodheart 1994] and even MS-
DOS provides a configurable pool of file IO buffers, specified in the configuration file
CONFIG.SYS.

EPOC’s Database Server uses a variable sized pool to store blocks of data read from a
database, and EPOC’s Socket service uses a fixed size pool of buffers [Symbian 1999].

NorTel’s Smalltalk implementation of telephone exchange software used pools of Call objects
to avoid the real-time limitations of heap allocation in critical parts of the system.

See Also
Memory Pools are often allocated using FIXED ALLOCATION, although they can also use
VARIABLE ALLOCATION. MEMORY DISCARD also allocates many smaller objects from a large
buffer; it can handle variable sized objects, though they must all be deleted simultaneously.

MEMORY LIMIT has a similar effect to POOLED ALLOCATION as both can cap the total memory
used by a component.
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Compaction
Also known as: Managed Tables, Memory Handles, Defragmentation

How do you recover memory lost to fragmentation?

• You have a large number of variable sized objects.

• Objects are allocated and deallocated randomly.

• Objects can change in size during their lifetimes.

• Fragmentation wastes significant amounts of memory space

• You can accept a small overhead in accessing each object.

External fragmentation is a major problem with VARIABLE ALLOCATION. For example, the
Strap-It-On™ ’s voice input decoder has up to a dozen large buffers active at any time, each
containing a logical word to decode.  They account for most of the memory used by the voice
decoder component and can vary in size as decoding progresses.  If they were allocated directly
from a normal heap, there’d be a lot of memory lost to fragmentation. If objects shrink, more
space is wasted between them; one object cannot grow past the memory allocated to another
object, but allocating more free memory between objects to leave them room to grow just
wastes more memory.

Allocated MemoryFree Memory

A B C D

Can't allocate a new large block, even though there's plenty
of space

Figure 4: The effect of allocating large buffers

Fragmentation occurs because computer memory is arranged linearly and accessed through
pointers.  Virtual memory (see PAGING) implements this same linear address space.  When you
allocate objects in memory you record this allocation and ownership using a pointer: that is, an
index into this linear address space.

Therefore: Move objects in memory to remove unused space between them.

Space lost by external fragmentation can be recovered by moving allocated objects in memory
so that objects are allocated contiguously, one after another: all the previously wasted space is
collected at one end of the address space, so moving the objects effectively moves the unused
spaces between them.

A B C D

Figure 5: Result of compaction

The main problem with moving objects is ensuring that any references to them are updated
correctly: once an object has been moved to a new location, all pointers to its old location are
invalid.  While it is possible to find and update every pointer to every moved object, it is
generally simpler to introduce an extra level of indirection. Rather than having lots of pointers
containing the memory address of each object, pointers to refer to a “handle for this object”. A
handle is a unique pointer to the actual memory address of an object: when you move the
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allocated object in memory you update the handle to refer to the object’s new location, and all
other pointers can still access the object correctly.

Object A

Object B

 B pointer

A pointer

References to
Object A

References to
Object B ... etc.

Figure 6: Handles

In the figure above, if you copy object A to a different location in memory and update the ‘A
Pointer’ handle, all external references to object A will remain the same but accesses through
them will find the new location.

Thus the Strap-It-On™ ’s voice input decoder maintains a large contiguous memory area for
buffers, and uses a simple algorithm to allocate each buffer from it. Each buffer is accessed
through handle.  When there’s insufficient contiguous space for a new buffer or when an
existing buffer needs to grow, even though there’s sufficient total memory available, the
software moves buffers in memory to free up the space and adjusts the handles to refer to the
new buffer locations.

Consequences
You have little or no memory wastage due to external fragmentation, reducing the program’s
memory requirements or increasing its capacity within a fixed amount of memory.
Compacting data structures can scale up easily should more memory become available.

However:  You’ll need additional code to manage the handles; if the compiler doesn’t do this for you,
this will require programmer effort to implement.  Indirect access to objects requires
programmer discipline to use correctly, and indirection and moving objects increases the
program’s testing cost.

There will be a small additional time overhead for each access of each object. Compacting
many objects can take a long time, reducing time performance. The amount of time required
can be unpredictable, so standard compaction is often unsuitable for real-time applications,
although there are more complex incremental compaction algorithms that may satisfy real-time
constraints, though such algorithms impose a further run time overhead.

v v v

Implementation
Here are some further issues to consider when implementing the COMPACTION pattern:

1. Compaction without Handles

You can compact memory without using explicit handles, provided that you can move objects
in memory and ensure they are referenced at their new location.

EPOC’s Packed Array template class, CArrayPakFlat, is one example of this approach
[Symbian 1999]. A Packed Array is a sequential array of items; each element in the packed
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array contains its size, allowing you to locate the position of the next one. Inserting or deleting
an element involves moving all the subsequent elements; the entire array is reallocating and
copied if there is insufficient space.  The template specialisation CArrayPak<TAny> even
allows variable-sized elements.

size size size

Locating an element by index is slow, though the implementation optimises for some situations
by caching the last item found.

Text editors that use an insertion cursor can also use compaction. Text only changes at the
cursor position; text before and after the cursor is static. So you can allocate a large buffer,
and store the text before the cursor at the start of the buffer and the text after the cursor at the
end.  Text is inserted directly at the cursor position, without needing to reallocate any memory,
however, when the cursor is moved, each character it moves past must be copied from one end
of the buffer to the other.

Text before
cursor Text after cursor

Cursor position.  New
text is added here.

In this case, the indirection is simply the location of the text following the cursor.  You store a
static pointer to this, so any part of the application can locate it easily.

2. Object tables

If many objects are to be compacted together an object table gives better random access
performance at a cost of a little more memory.  An object table contains all the handles
allocated together.  Object tables make it easy to find every handle (and thus every object) in
the system, making compaction easier.   You can store additional information, along with the
handle in each object table entry, such as a class pointer for objects, count fields for
REFERENCE COUNTING, mark bits for GARBAGE COLLECTION, and status bits or disk addresses
for PAGING.

3. Optimising Access to Objects. Using a direct pointer to an object temporarily can increase
execution speed compare with indirection through a handle or object table for every access.
But, consider the following:

SomeClass* p = handle.GetPointer();         // 1
p->FunctionWhichTriggersCompaction();       // 2
p->AnotherFunction();                       // 3. p is now invalid!

If the function in line 2 triggers compaction, the object referred to by handle may have
moved, making the pointer p invalid. You can address this problem explicitly by allowing
handles to lock objects in memory while they’re being accessed; objects may not be moved
while they are locked.  Locking does allow direct access to objects, but requires programmer
discipline to unlock objects that are not needed immediately, space in each handle to store a
lock bit or lock count, and a more complex compaction algorithm that avoids moving locked
objects. The PalmOS and MacOs operating systems support lockable handles to most memory
objects, so that their system heaps can be compacted [Apple 1985, Palm 2000].
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4. Compacting Objects

In the simplest approach, objects are stored in increasing order of memory location.  You can
compact the objects by copying each one in turn to the high water mark of the ones already
compacted.

A B C D

Copy

This approach works well when there is already a logical order on the objects, such as the
elements of a sequence.  If the sequence is compacted whenever an object is deleted, half the
objects will be copied on average.

This does not work so well when objects are not stored in the correct order. In that case a better
approach is simultaneously to sort and compact objects by copying them into a different
memory space. Copying GARBAGE COLLECTION algorithms, for example, copy old objects into
a new memory space. Unused objects are not copied, but are discarded when the old space is
reused.

A BC D

A B C

5. Compacting on Demand

Persistent or long-lived objects can be compacted occasionally, often on user command. One
way to implement this is to store all the persistent objects on to SECONDARY STORAGE,
reordering them (as described above) as they are stored, then to read them back in.  If the
objects are compacted rarely, then you can use direct pointers for normal processing, since the
time cost of finding and changing all the pointers is paid rarely and under user control.

6. C++ Handle classes

C++’s operator overloading facilities allow us to implement an object with semantics identical
to a pointer [Coplien 1994], but which indirects through the object table.  Here’s an example of
a template class that we can use in place of a pointer to an object of class T.  The Handle class
references the object table entry for the underlying object (hence tableEntry is a pointer to a
pointer), and redefines all the C++ pointer operations to indirect through this entry.

template <class T> class Handle {
public:

Handle( T** p ) : tableEntry( p ) {}
T* operator->() const { return ptr(); }
T& operator*() const { return *ptr(); }
operator T*() const { return ptr(); }

private:
T* ptr() const { return *tableEntry; }
T** tableEntry;

};

Example
The following Java example extends the MessageStore example described in the FIXED

ALLOCATION and VARIABLE ALLOCATION patterns.  This version uses memory compaction to
permit variable size messages without wasting storage memory.  Instead of storing each
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message in its own separate fixed size buffer, it uses a single buffer to store all the messages,
and keeps just the lengths of each message.  We’ve implemented this using FIXED ALLOCATION,
avoiding new outside the constructor.

The figure below shows the new message format:

To be, or not to be, that is the question.Whether 'tis noble

Message
Store

o say we end the heart-ache and the thousand natural shocks

r in the mind to suffer the slight and arrows or outrageous

fortune.Or to take arms against a sea of troubles and by op

posing end them.To die, to sleep - no more;And by a sleep t

that flesh is heir to.

1 2 3 4 5

Tis a consummation devoutly to be wished.
New

message
- fails

The CompactingMessageStore class has a messageBuffer to store characters, an array of
the lengths of each message, and a count of the number of messages in the store.

class CompactingMessageStore {
    protected char[] messageBuffer;
    protected int[] messageLengths;
    protected int numberOfMessages = 0;

The constructor allocates the fixed-sized arrays.
    public CompactingMessageStore(int capacity, int totalStorageCharacters) {
        messageBuffer = new char[totalStorageCharacters];
        messageLengths =  new int[capacity];
    }

We can calculate the offset of each message in the buffer by summing the lengths of the
preceding messages:

protected int indexOfMessage(int m) {
        int result = 0;
        for (int i = 0; i < m; i++) {
            result += messageLengths[m];
        }
        return result;
    }

Adding a new message is simple: we just copy the new message to the end of the buffer.  In this
implementation, overflow throws an exception rather than overwriting earlier messages as in
the FIXED ALLOCATION example.

    public void acceptMessage(char[] msg, int msgLength) {
        int endOffset = indexOfMessage(numberOfMessages);

        try {
            messageLengths[numberOfMessages] = msgLength;
            System.arraycopy(msg, 0,  messageBuffer,
                             endOffset, msgLength);
        }
        catch (ArrayIndexOutOfBoundsException e) {
            throw new OutOfMemoryError("Message store overflow");
        }

        numberOfMessages++;
    }
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Retrieving a message is straightforward:
    public int getMessage(int i, char[] destination) {
        System.arraycopy(messageBuffer, indexOfMessage(i),
                         destination, 0, messageLengths[i]);
        return messageLengths[i];
    }

The interesting point is what happens when we remove messages from the buffer.  To keep
everything correct, we have to copy all the messages after the one we’ve removed forward in
the buffer, and move the elements of the messageLengths array up one slot:

    public void deleteMessage(int i) {
        int firstCharToMove = indexOfMessage(i+1);
        int lastCharToMove = indexOfMessage(numberOfMessages);

        System.arraycopy(messageBuffer, firstCharToMove,
                         messageBuffer, indexOfMessage(i),
                         lastCharToMove - firstCharToMove);
        System.arraycopy(messageLengths, i+1, messageLengths, i,
                         numberOfMessages - i - 1);

        numberOfMessages--;
    }

v v v

Known Uses
EPOC’s Font & Bitmap Server manages large bitmaps SHARED between several processes. It
keeps the data areas of large bitmaps (>4Kb) in a memory area with no gaps in it – apart from
the unused space at the top of the last page.  When a bitmap is deleted the Server goes through
it's list of bitmaps and moves their data areas down by the appropriate amount, thereby
compacting the memory area.  The Server then updates all its pointers to the bitmaps.  Access
to the bitmaps is synchronised between processes using a mutex [Symbian 1999].

The Palm and Macintosh memory managers both use handles into a table of master pointers to
objects so that allocated objects can be compacted [Palm 2000, Apple 1985]. Programmers
have to be disciplined to lock handles while using the objects to which they refer.

The Sinclair ZX-81 (also known as the Timex Sinclair TS-1000) was based on compaction.
The ZX-81 supported an interactive BASIC interpreter in 1K of RAM; the interpreter tables
were heavily compacted, so that if you used lots of variables you could only have a few lines of
program code, and vice versa.  The pinnacle of compaction was in the screen memory: if the
screen was blank, it would shrink so that only the end-of-line characters were allocated.
Displaying text on the screen caused more screen memory to be allocated, and everything else
in memory would be moved to make room.

See Also
FIXED ALLOCATION and POOLED ALLOCATION are alternative ways to solve the same problem.
By avoiding heap allocation during processing, they avoid fragmentation altogether.

PAGING, REFERENCE COUNTING, and GARBAGE COLLECTION can all use compaction and object
tables.

Many garbage collectors use for dynamic languages like Lisp, Java, and Smalltalk use
COMPACTION, with or without objects table and handles. Jones and Lins [1996] presents the
most important algorithms. The Smalltalk Blue Book [Goldberg and Robson 1983] includes a
full description of a Smalltalk interpreter that uses COMPACTION with an object table.
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Reference Counting
How do you know when to delete a shared object?

• You are SHARING objects in your program

• The shared objects are transient, so their memory has to be recycled when they are no
longer needed.

• Interactive response is more important than overall performance.

• The space occupied by objects must be retrieved as soon as possible.

• The structure of shared objects does not form cycles.

Objects are often shared across different parts of components, or between multiple components
in a system.  If the shared objects are transient, then the memory they occupy must be recycled
when they are no longer used by any client.  Detecting when shared objects can be deleted is
often very difficult, because clients may start or stop sharing them at any time.

For example, the Strap-It-On Wrist-Mounted PC caches bitmaps displayed in its user interface,
so that each bitmap is only stored once, no matter how many windows it is displayed in. The
bitmaps are cached in a hash table that maps from bitmap IDs to actual bitmap objects. When
a bitmap is no longer required it should be deleted from the cache; in the illustration below,
bitmap B is no longer required and can be deleted.

Window 1

Window 2

Bitmap A

Bitmap B

0123

0345

The traditional way to manage memory for bitmaps displayed in windows is to allocate
bitmaps when windows are opened, and deallocate bitmaps when windows are closed.  This
doesn’t work if the bitmaps are cached, because caching aims to use a pre-existing bitmap, if
one exists, and to deallocate bitmaps only when all windows that have used them are closed.
Deleting a shared bitmap when its first window closes could mean that the bitmap was no
longer available to other windows that need it.

Therefore: Keep a count of the references to each shared object, and delete each object when
its count is zero.

Every shared object needs to have a reference count field which stores the number of other
objects that point to it. A reference count must count all references to an object, whether from
shared objects, temporary objects, permanent objects, and references from global, local, and
temporary variables. The invariant behind reference counting is that an object’s reference count
field is accurate count of the number of references to the object. When an object’s reference
count is zero it has no references from the rest of the program; there is no way for any part of
the program to regain a reference to the object, so the object can be deleted.  In the figure
below object C has a zero reference count and can be deleted:



Reference Counting Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 39

B C

ED

A

1

2

0

1

When an object is allocated no other objects or variables can refer to it so its reference count is
zero. When a reference to the object is stored into a variable or into a field in another object,
the object’s reference count must be incremented, and similarly when a reference to an object is
deleted, the object’s reference count must be decremented.  When an object’s reference count
gets back to zero, the object can be deleted and the memory it occupies can be recycled.

There are a couple of important points to this algorithm.  First, an assignment to a variable
pointing to reference-counted objects involves two reference count manipulations: the reference
count of the old contents of the variable must be decremented, and then the reference count of
the new contents of the variable must be incremented.  Second, if an object itself contains
references to reference counted objects, when the object is deleted all the reference counts of
objects to which it referred must be decremented recursively.  After all, a deleted object no
longer exists so it cannot exercise any references it may contain. In the diagram above, once C
has been deleted, object E can be deleted and object D will have a reference count of one.

For example, the StrapItOn associates a reference count with each bitmap in the cache. When a
bitmap is allocated, the reference count is initialised to zero. Every window which uses a
bitmap must first send attach to the bitmap to register itself; this increases the bitmap’s
reference count. When a window is finished with a bitmap, it must send release the bitmap;
release decrements the reference count. When a bitmap’s reference goes back to zero, it must
have no clients and so deallocates itself.

Consequences
Like other kinds of automatic memory management, reference counting increases the program’s
design quality: you no longer need to worry about deleting dynamically allocated objects.
Memory management details do not have to clutter the program’s code, making the program
easier to read and understand, increasing maintainability. Memory management decisions are
made globally, and implicitly for the whole system, rather than locally and explicity for each
component. Reference counting also decreases coupling between components in the program,
because one component does not need to know the fine details of memory magement implement
in other components. This also makes it easier to reuse the component in different contexts with
different assumptions about memory use, further improving the system maintainability.

The overhead of reference counting is distributed throughout the execution of the program,
without any long pauses for running a garbage collector. This provides smooth and predictable
performance for interactive programs, and improves the real-time responsiveness of the
system.

Reference counting works well when memory is low, because it can delete objects as soon as
they become unreachable, recycling their memory for use in the rest of the system.  Unlike
many forms of GARBAGE COLLECTION, REFERENCE COUNTING permits shared objects to release
external resources, such as file streams, windows, or network connections.

However:
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Reference counting requires programmer discipline to correctly manipulate reference counts in
programs.  If a reference to an object is created without incrementing the object’s reference
count, the object could be deallocated, even though the refrence is in use.

Reference counting does not guarantee that memory which the program no longer needs will be
recycled by the system, even if reference counts are managed correctly.  Reference counting
deletes objects which are unrechable from the rest of the program. Programmer discipline is
required to ensure objects which are no longer required are no longer reachable, but this is
easier than working out when shared objects can be manually deleted.

Reference count manipulations imposes large a runtime overhead because they occur on every
pointer write; this can amount to ten or twenty percent of a programs running time. Allocating
memory for reference count fields can increases the memory requirements of reference counted
objects.  Reference counting also increases the program’s memory requirements for stack
space to hold recursive calls when deleting objects objects.

Finally, reference counting doesn’t work for cycles of shared objects.

v v v

Implementation
Reference count manipulations and recursive deletion are basically local operations, affecting
single objects and happening at well defined times with respect to the execution of the program.
This means that programmers are likely to feel more “in control” of reference counting than
other GARBAGE COLLECTION techniques. This also means that reference counting is
comparatively easy to implement, however, there are a number of issues to consider when using
reference counting to manage memory.

1. Deleting Compound Objects.  Shared objects can themselves share other objects.  For
example, Strap-It-On’s bitmap cache could be extended to cache compound figures, where a
figure can be made up of a number of bitmaps or other figures (see below, where Figure A
includes Figure B).

Window 1

Window 2

Figure A

Figure B

0123

0345

When a reference counted object is deleted, if it refers to other reference counted objects, their
reference counts must also be decremented.  In the illustration, if Figure A is destroyed, it
should decrease the reference count for Figure B.

Freeing reference counted objects is a recursive process: once an object’s reference count is
zero, it must reduce the reference counts of all the objects to which it refers; if those counts
also reach zero, the objects must be deleted recursively.  Recursive freeing makes reference
counting’s performance unpredictable (although long pauses are very rare) and also can require
quite a large amount of stack memory. The memory requirements can be alleviated by
threading the traversal through objects’ existing pointers using pointer reversal (see the
EMBEDDED POINTER pattern), and the time performance by queuing objects on deletion and
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recycling them on allocation.  This is ‘lazy deletion’ – see Jones and Lins [1996] for more
details.

2. Cycles.  Objects can form any graph structure and these structures may or may not have
cycles (where you can follow references from one object back to itself through the graph).  The
structure in left illustration is acyclic; in the right illustration, C and E form a cycle.

B C

ED

A

1

2

1

1

B C

ED

A

1

2

2

1

Reference counting doesn’t work for cycles of shared objects, and such cycles can be quite
common: consider doubly linked lists, skip lists, or trees with both upward and downward
pointers. If two (or more) objects point to each other, then both of their reference counts can be
non-zero, even if there are no other references to the two objects.  In the below, objects C and E
form a cycle. They will have reference counts of one, even though they should be deleted
because they are not accessible from any other object. In fact they would never be deleted by
reference counting, even if every other object was removed.

B C
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2.1 Breaking Cycles.  One way of dealing with cycles is to require programmers to break
cycles explicitly, that is, before deleteing the last external reference to a cyclic structure of
objects, programmers should overwrite at least one of the references that creates the cycle with
nil.  For example, you could remove the pointer from E to C in the figure above.  After this,
the object structure no longer contains a cycle, so it can be recycled when the last external
reference to it is also removed.  This requires programmer discipline to remember to nil out
the references that cause cycles.

2.2 Garbage Collectors. You can also implement a GARBAGE COLLECTOR as a backup to
reference counting, because garbage collectors can reclaim cyclic structures.  The collection
can run periodically or/and whenever reference counting cannot reclaim enough memory.  A
garbage collector requires more programmer effort than reference counting, and computation
must be stopped when it runs, costing processing time and decreasing interactive
responsiveness and therefore usability.

2.3 Cycle-Aware Reference Counting.  Alternatively, there are more complex versions of the
basic reference counting algorithm that can handle cyclic structures directly, but they are not
often worth the implementation effort [Jones and Lins 1996].
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3. Allocating the reference count field

Each reference counted object needs a reference count field which imposes a size overhead.  In
theory a reference count field needs to be large enough to count references from every other
pointer in the system, requiring at least enough space for a full pointer to store the count.

In practice, most objects are pointed to by only a few other objects, so reference counts can be
made much smaller, perhaps only one byte. Using a smaller reference count can save a large
amount of memory, especially if the system contains a large number of small objects and has a
large word size. Smaller refernece counts raise the possibility that the counts can overflow. The
usual solution is called sticky reference counts: once a count field reaches its maximum value it
can never be decreased again. Sticky counts ensure that objects with many references will never
be recycled incorrectly, by ensuring they will never be collected, at least by reference counting.
A backup GARBAGE COLLECTOR can correct sticky reference counts and collect once widely
shared objects that have since become garbage.

4. Extensions

Because reference counting is a simple but inefficient algorithm, it lends itself to extensions and
optimisations.

4.1 Keeping Objects with a Zero Reference Count.  Alternatively, if the objects represent
external objects and are held in a cache, then it may sometimes make sense to keep objects even
if their reference count is zero.  This applies if the items are expensive to recreate, and there’s a
reasonable chance that they may be needed again.  In this case, you use reference counts as a
guide in most situations, but you can implement CAPTAIN OATES and delete unused objects
when the memory cost of keeping them outweighs the cost of recreating them later.

4.2 Finalisation. Unlike more efficient forms of garbage collection, reference counting
explicitly deletes unreachable objects. This makes it easy to support finalisation, that is,
allowing objects to execute special actions just before they are about to be deleted.  An objects
finalisation action is executed once its reference counts reaches zero but before decrementing
the objects it references and before recycling its memory. Finalisation code can increase an
object’s reference count, so deletion should only proceed if the reference count is still zero after
finalisation.

4.3 Optimisations.  Reference counting imposes an overhead on every pointer assignment or
copy operation. You can optimise code by avoiding increment and decrement operations when
you are sure an object will never be deallocated due to a given reference, typically because you
have at least one properly reference-counted valid reference to the object.  More sophisticated
reference counting schemes, such as deferred reference counting [Jones and Lins 1996, Deutsch
and Bobrow 1976], can provide the benefits of this optimisation without the difficulties, though
with a slightly increased runtime overhead and substantially more programmer effort.

Example
This C++ example implements an object large enough to justify sharing and therefore reference
counting.  A ScreenImage contains a screen display of pixels.  We might use it as follows:

    {
        ScreenImage::Pointer image = new ScreenImage;
        image->SetPixel( 0, 0 );
        // And do other things with the image object...
    }

When image goes out of scope at the terminating brace, the ScreenImage object will be
deleted, unless there are other ScreenImage::Pointer objects referencing it.
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The implementation of ScreenImage must have a reference count somewhere.  This
implementation puts it in a base class, ReferenceCountedObject.
   typedef char Pixel;

class ScreenImage : public ReferenceCountedObject {
    Pixel pixels[SCREEN_WIDTH * SCREEN_HEIGHT];

The reference counting pointer template class requires a lot of typing to use; for convenience
we define a typedef for it:

public:
    typedef ReferenceCountingPointer<ScreenImage> Pointer;

And here are a couple of example member functions:
    void SetPixel( int i, Pixel p ) { pixels[i] = p; }
    Pixel GetPixel( int i ) { return pixels[i]; }
};

1. Implementation of ReferenceCountedObject

The class ReferenceCountedObject contains the reference count, and declares member
functions to manipulate it.  The DecrementCount operation can safely delete the object, since
it doesn’t access its this pointer afterward.  Note the virtual destructor, so that deletion invokes
the correct destructor for the derived class.

class ReferenceCountedObject {
private:
    int referenceCount;
public:
    void IncrementCount() { referenceCount++; }
    void DecrementCount() { if (--referenceCount == 0) delete this; }
protected:
    ReferenceCountedObject() : referenceCount( 0 ) {}
    virtual ~ReferenceCountedObject() { }
};

2. Implementation of the smart pointer, ReferenceCountingPointer

This is another example of the C++ Smart Pointer idiom.  It uses the pointer operator (->) to
make an instance have the same semantics as a C++ pointer, and manages the reference counts:

template <class T> class ReferenceCountingPointer {
private:
    T* pointer;
    void IncrementCount() { if (pointer) pointer->IncrementCount(); }
    void DecrementCount() { if (pointer) pointer->DecrementCount(); }

To keep the reference counts correct, it needs all the ‘Canonical Class Form’ [Ellis and
Stroustrup 1990]: default constructor, copy constructor, assignment operator and destructor:

public:
    ReferenceCountingPointer() : pointer( 0 ) {}
    ReferenceCountingPointer( T* p )
        : pointer( p ) { IncrementCount(); }
    ReferenceCountingPointer( const ReferenceCountingPointer<T>& other )
        : pointer( other.pointer ) { IncrementCount(); }
    ~ReferenceCountingPointer() { DecrementCount(); }

The assignment operator is particularly complicated, since it may cause the object originally
referenced to be deleted.  Note how, as always, we have to check for self-assignment and to
return a reference to *this [Meyers 1992].
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    const ReferenceCountingPointer<T>&
    operator=( const ReferenceCountingPointer<T>& other ) {
        if (this != &other) {
            DecrementCount();
            pointer = other.pointer;
            IncrementCount();
        }
        return *this;
    }

The ‘smart’ operations, though, are simple enough:
    T* operator->() const { return pointer; }
    T& operator*() const { return *pointer; }

And finally we need a couple more operators if we want to use the smart pointers in STL
collections, since some STL implementations require a comparison operator [Austern 1999]:

    bool operator<( const ReferenceCountingPointer<T>& other ) const {
        return pointer < other.pointer;
    }
    bool operator==( const ReferenceCountingPointer<T>& other ) const {
        return pointer == other.pointer;
    }
};

v v v

Known Uses
Reference counting is part of the garbage collection implementation provided in some language
environments.  These implementations are invisible to the programmer, but improve the time
performance of memory management by deferring the need for a garbage collection process.
The limbo language for programming embedded systems used reference counting, because it
doesn’t pause computation, and because it allows external objects (menus and popup windows,
for example) to be deleted immediately they are no longer used.  [Pike 1997]. Smalltalk-80 and
VisualWorks\Smalltalk prior to version 2.5 similarly used reference counting for reasons of
interactive performance [Goldberg and Robson 1983; ParcPlace 1994].

Microsoft’s COM framework has a binary API based on Microsoft C++’s VTBL
implementation. COM uses reference counting to allow several clients to share a single COM
object [Box 1998].

UNIX directory trees provide a good example of a directed acyclic graph.  The UNIX ln
command allows you to create ‘hard links’, alternative names for the same file in different
directories. A file is not deleted until there are no hard links left to it.  Thus each UNIX low-
level file object (inode) contains a reference count of the number of links to it, and the ln
command will fail if you try to use it to create a cycle [Kernighan and Pike 1984].

See also
Modern memory management research has focused on GARBAGE COLLECTION rather than
reference counting, to improve system’s overall time performance [Jones and Lins 1996].

The particular implementation we’ve used in the example section is the COUNTED POINTER

idiom described in [Buschman et al 1996] and [Coplien 1994].
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Garbage Collection
Also Known As: Mark-sweep Garbage Collection, Tracing Garbage Collection.

How do you know when to delete shared objects?

• You are SHARING objects in your program

• The shared objects are transient, so their memory has to be recycled when they are no
longer needed.

• Overall performance is more important than interactive or real-time responsiveness.

• The structure of the shared objects does form cycles.

You are SHARING dynamically allocated objects in your program. The memory occupied by
these objects needs to be recycled when they are no longer needed. For example, the Strap-It-
On’s DailyFreudTimer application implements a personal scheduler and psychoanalyst using
artificial intelligence techniques.  DailyFreudTimer needs many dynamically allocated objects
to record potential time schedules and psychological profiles modelling the way you spend your
week.  As it runs, DailyFreudTimer continually creates new schedules, evaluates them, and
then rejects low-rated schedules in favour of more suitable ones, discarding some (but not all)
of the objects it has created so far.  The application often needs to run for up to an hour before
it finds a schedule which both means you get all you need to done this week, and also that you
are in the right psychological state at the right time to perform each task.
Objects are often shared within components, or between multiple components in a system.
Determining when shared objects are no longer used by any client can be very difficult,
especially if there are a large number of shared objects.  Often, too, the structure of those
objects forms cycles, making REFERENCE COUNTING invalid as an approach.

Therefore: Identify unreferenced objects, and deallocate them.

To do garbage collection, you suspend normal processing in the system, and then follow all the
object references in the system to identify the objects that are still reachable.  Since other
objects in the system cannot be referenced now, it follows that they’ll never be accessible in
future (where could you obtain their references from?).  In fact, these unreferenced objects are
garbage, so you can deallocate them.
To find all the referenced objects in the system, you’ll need to start from all the object
references available to the running system.  The places to start are called the root set:

• Global and static variables,

• Stack variables, and perhaps

• References saved by external libraries

Starting from these, you can traverse all the other active objects in your runtime memory space
by following all the object references in every object you encounter.  If you encounter the same
object again, there’s no need to examine its references a second time, of course.
There are two common approaches to removing the inactive objects:

• Mark-sweep Garbage Collectors visit all the objects in the system, de-allocating the
inactive ones.
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• Copying Garbage Collectors copy the active objects to a different area, MEMORY

DISCARDing the inactive ones.

For example, StrapItOn implements mark-sweep collection for its schedule and profile objects
in the DayFreudTimer.  It keeps a list of every such object, and associates a mark bit each.
When DayFreudTimer runs out of memory, it suspends computation and invokes a garbage
collection. The collector traces every active object from a set of roots (the main
DayFreudTimerApplication object), recursively marks the objects it finds, and then sweeps
away all unmarked objects.

Consequences
GARBAGE COLLECTION can handle every kind of memory structure.  In particular, it can collect
structures of objects containing cycles with no special effort or discipline on behalf of the
programmer.  There’s generally no need for designers to worry about object ownership or
deallocation, and this improves design quality and thus the maintainability of the system.
Similarly it reduces the impact of local memory-management choices on the global system.
GARBAGE COLLECTION does not impose any time overhead on pointer operations, and has
negligible memory overhead per allocated object.  Overall it is usually more time efficient than
REFERENCE COUNTING, since there is no time overhead during normal processing.

However:  Garbage collection can generate big pauses during processing.  This can disrupt the real-
time response of the system, and in User Interface processing tend to impact the usability of
the system.    In most systems it’s difficult to predict when garbage collection will be required,
although special purpose real-time algorithms may be suitable.  Garbage objects are collected
some time after they become unreachable, so there will always appear to be less free memory
available that with other allocation mechanisms.

Compared with REFERENCE COUNTING, most garbage collectors will need more free space in the
heap (to store garbage objects between collections phases), and will be less efficient when the
application’s memory runs short.  Garbage collectors also have to be able to find the global
root objects of the system, to start the mark phase traversal, and also need to be able to find all
outgoing references from an object.  In contrast, REFERENCE COUNTING only needs to track
pointer assignments.
Finally, the recursive mark phase of a Mark-sweep collector needs stack space to run, unless
pointer reversal techniques are used (see the EMBEDDED POINTER pattern).

v v v

Implementation
Garbage collectors have been used in production systems since the late 1960s, but still people
are afraid of them. Why?  Perhaps the most important reasons is the illusion of control and
efficiency afforded by less sophisticated forms of memory management, such as static
allocation, manually deallocated heaps, or stack allocation, especially as many (badly tuned)
garbage collectors can impose random pauses in a program's execution.  Stack allocation took
quite some time to become as accepted as it is today (many FORTRAN and COBOL
programmers still shun stack allocation), so perhaps garbage collection will be as slow to make
its way into mainstream programming.

In systems with limited memory, garbage collectors have even less appeal than REFERENCE

COUNTING and other more positive forms of memory management.  But if you have complex
linked structures then a simple garbage collector will be at least as efficient and reliable as
manual deallocation code.
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We can only present a brief overview of garbage collection in the space of one pattern.
Garbage Collection, by Richard Jones with Raphael Lins [1996] is the standard reference on
garbage collection, and well worth reading if you are considering implementing a garbage
collector.
1. Programming with Garbage Collection

Programming with Garbage Collection is remarkably like programming without garbage
collection, except that it is easier, because you don't have to worry about explicitly freeing
objects, juggling reference counts, or breaking cycles.  It is quite possible to control the
lifetimes of objects in a garbage-collected system just as closely as in a manually managed
system, following three simple insights:

• If "new" is never called, objects are never allocated.
• If objects never become unreachable, they will never be deallocated
• If objects are never allocated or deallocated, the garbage collector should never

run.

The first point is probably the most important: if you don't allocate objects you should not need
any dynamic memory management.  In languages that are habitually garbage collected it can be
more difficult to find out when objects are allocated, for example, some libraries will allocate
objects willy-nilly when you do not expect them to.  Deleting objects in garbage collected
systems can be difficult: you must find and break every pointer to the object you wish to delete
[Lycklama 1999].

2. Finalisation and Weak References

Certain kinds of object may own, and thus need to release non-memory resources such as file
handles, graphics resources or device connections.  These objects need to implement
finalisation methods to do this release.

Finalisation can be quite hard to implement in many garbage collectors. You generally don't
want the main sweeping thread to be delayed by calling finalisation, so you have to queue
objects for processing by a separate thread. Even if supported well, finalisation tends to be
unreliable because the precise time an object is finalised depends purely on when the garbage
collector runs.

Some garbage collectors support weak references, references that are not traced by the
collector.  Unlike normal references, an object pointed to by a weak reference will become
garbage unless at least one normal reference also points to the object. If the object is deleted,
all the weak references are usually automatically replaced with some nil value.  Weak
references can be useful when implementing caches, since if memory is low, unused cached
items will be automatically released.
3. Mark-Sweep Garbage Collection

A mark-sweep garbage collector works by stopping the program, marking all the objects that
are in use, and then deleting all the unused objects in a single clean sweep.  Mark-sweep
garbage collection requires only one mark bit per object in the system. This bit can often be
PACKED within some other field in the object – perhaps the first pointer field since this bit is
only every set during the garbage collection phases; during the main computation this bit is
always zero.
When an object is allocated, its mark bit is clear. Computation proceeds normally, without any
special actions from the garbage collector: object references can be exchanged, fields can be
assigned to, and, if their last reference is assigned to another object or to nil, objects may
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become inaccessible.  When memory is exhausted, however, the main program is paused, and
the marking and sweeping phases of the algorithm are executed.
Figure XX shows a system with five objects. Object A is the root of the system, and objects B
and D are accessible from it.  Objects C and E are not accessible from A, and so strictly are
garbage.  However they make up a ‘cycle’, so REFERENCE COUNTING, however, could not
delete them.

B C

ED

A

Figure 7: Before Garbage Collection

Mark-sweep garbage collection proceeds in two phases.  First, the mark phase recursively
traces every inter-object reference in the programming, beginning from a root set, such as all
global variables and all variables active on the stack. When the mark phase reaches an
unmarked object, it sets the object’s mark bit, and recursively visits all the object’s children.
After the mark phase, every object reachable from the root set is marked: objects unreachable
from the root set are unmarked.
The figure below shows the state of the objects after the mark phase. The marked objects are
drawn with shaded backgrounds. A, B and D are marked because they are reachable from the
root of the system. C and E are not marked.

Figure 8: After the mark phase

Second, the sweep phase visits every object on the heap: that is, every object active at the end
of the last sweep phase plus every object allocated since then.  Whenever the sweep phase finds
a marked object, it clears its mark bit (to be ready for the next mark phase). Whenever the
sweep phase finds an unmarked object, it recycles the memory used by that object, running the
object’s finalisation code, if it has any.
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Figure 9: After the sweep phase

Considering the example, the sweep phase visits every object in an arbitrary order, deleting
those who do not carry the mark. So after the sweep phase only objects A, B and D remain; the
unmarked C and E objects have been deleted.
Mark-sweep works because it explicitly interprets the idea of an active or live object.  Live
objects must be reachable either directly from the root set (global variables, stack variables,
and perhaps references saved by external libraries), or via chains of references through objects
starting from the root set.  The mark phase marks just those objects that meet this criterion, and
then the sweep phase eliminates all the garbage objects that do not.
3. Copying Garbage Collectors

Modern workstation garbage collectors are typically based on object copying, rather than
mark-sweep, thus implementing a form of COMPACTION.  A simple copying collector allocates
twice as much virtual memory as it needs, in two hemispheres. While the system is running, it
uses only one of these hemispheres, called the "fromspace", containing all the existing objects
packed together at one end.  New objects are allocated following directly after the old objects,
simply by incrementing a pointer (just as cheaply as stack allocation).  When the fromspace is
full, the normal program is paused, and all fromspace objects are traversed recursively,
beginning from the roots of the system.

A copying collector's traversal differs from a marking collector's. When a copying collector
reaches an object in fromspace for the first time (note that by definition, a reachable object is
not garbage) it copies that object into the other hemisphere (the tospace). It then replaces the
fromspace object with a forwarding pointer to the tospace version. If the copy phase reaches a
forwarding pointer, that pointer must come from an object already copied into the tospace, and
the tospace object's field is updated to follow the forwarding pointer into the tospace.  Once no
more objects can be copied, the tospace and fromspace are (logically) swapped, and the system
continues to execute.

More sophisticated copying collectors allocate two hemispheres for only the recently created
objects, moving longer-lived objects into a separate memory space [Ungar 1984; Hudson and
Moss 1992].

Copying collectors have a number of advantages over Mark-sweep collectors. Copying
collectors avoid fragmentation, because the act of copying also compacts all the active objects.
More importantly, copying collectors can perform substantially better because they have no
sweep phase. The time required to run a copying collector is based on copying all live objects,
rather than marking live objects plus sweeping through every object on the heap, allocated and
garbage.  On the other hand, copying collectors move objects around as the program runs,
costing processing time; require more virtual memory than a simpler collector, and are more
difficult to implement.
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Example
This example illustrates a CollectableObject class that supports mark-sweep garbage
collection.  Every object to garbage collect must derive from CollectableObject.   The static
method CollectableObject::GarbageCollect does the GARBAGE COLLECTION.

For example, we might implement a Node class with ‘left’ and ‘right’ pointers as in
Implementation Section “3. Mark-Sweep Garbage Collection”.  Node derives from
CollectableObject, and every instance must be allocated on the heap:

class Node : public CollectableObject {
private:
    Node* left;
    Node* right;
public:
    Node( Node* l = 0, Node* r = 0 ) : left( l ), right( r ) {}
    ~Node() {}
    void SetLinks( Node* l, Node* r ) { left = l; right = r; }

The only special functionality Node must provide is a mechanism to allow the Garbage
Collector to track all its references.  This implementation uses a TEMPLATE FUNCTION,
GetReferences, declared in the base class.  GetReferences must call HaveReference for
each of its references [Gamma 1995].  For convenience a call to HaveReference with a null
pointer has no effect.

private:
    void GetReferences() {
        HaveReference( left );
        HaveReference( right );
    }
};

Then we can allocate Node objects into structures, and they will be garbage collected.  This
implementation of Mark-Sweep garbage collection uses the normal ‘delete’ calls, invoking
Node’s destructor as normal.  For example we might set up the structure in the illustration:

B C
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    Node* E = new Node( 0, 0 );
    Node* D = new Node( 0, 0 );
    Node* C = new Node( D, E );
    Node* B = new Node( 0, D );
    Node* A = new Node( B, C );
    E->SetLinks( 0, C );

An initial Garbage Collection will have no effect:
    CollectableObject::GarbageCollect( A );

However when we remove the reference from A to C, a second garbage collection will delete C
and E:

    A->SetLinks( B, 0 );
    CollectableObject::GarbageCollect( A ); // Deletes C and E

Finally, we can do a garbage collection will a null root node, to delete all the objects:
    CollectableObject::GarbageCollect( 0 );
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1. Implementation of the Garbage Collector

The garbage collector uses a single class, CollectableObject.  Every CollectableObject
maintains one extra field, the markBit for use by the collector. Every CollectableObject
enters a collection allCollectableObjects, so that they can be found during the sweep
phase.

class CollectableObject {
friend int main();
private:
    bool markBit;
public:
    CollectableObject();
    virtual ~CollectableObject();
    virtual void GetReferences() = 0;
    void HaveReference( CollectableObject* referencedObject);
private:
    void DoMark();

2. The Garbage Collection Functions

The main Garbage Collector functionality is implemented as static functions and members in
the CollectableObject class.  We use a doubly-linked list, or deque, for the collection of all
objects, since this is very efficient at adding entries, and at removing them via an iterator:

    typedef deque<CollectableObject *> Collection;
    static Collection allCollectableObjects;
public:
    static void GarbageCollect( CollectableObject* rootNode );
private:
    static void MarkPhase(CollectableObject* rootNode);
    static void SweepPhase();
};

The main GarbageCollect function is simple:
/*static*/
void CollectableObject::GarbageCollect( CollectableObject* rootNode ) {
    MarkPhase(rootNode);
    SweepPhase();
}

The mark phase calls DoMark on the root object, if there is one; this will recursively call
DoMark on all other active objects in the system:

/*static*/
void CollectableObject::MarkPhase(CollectableObject* rootNode)        {
    if (rootNode)

    rootNode->DoMark();
}

The sweep phase is quite straightforward. We simply run down every object, and delete them if
they are unmarked. If they are marked, they are still in use, so we simply reset the mark bit in
preparation for subsequent mark phases:

/*static*/
void CollectableObject::SweepPhase() {
    for (Collection::iterator iter = allCollectableObjects.begin();
         iter != allCollectableObjects.end(); )  {
        CollectableObject* object = *iter;
        if (!object->markBit) {
            iter = allCollectableObjects.erase( iter );
            delete object;
        } else {
            object->markBit = false;
            ++iter;
        }
    }
}
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2.  Member functions for CollectableObject:

The constructor for CollectableObject initialises the mark bit to ‘unmarked’, and adds itself
to the global collection:

CollectableObject::CollectableObject()
    : markBit( false ) {
    (void)allCollectableObjects.push_back(this);
}

We also need a virtual destructor, as derived instances will be destructed as instances of
CollectableObject.

/*virtual*/
CollectableObject::~CollectableObject()
{}

The DoMark function recursively sets the mark bit on this object and objects it references:
void CollectableObject::DoMark() {
    if (!markBit) {
        markBit = true;
        GetReferences();
    }
}

And similarly the HaveReference function is invoked by the GetReferences functions in
derived classes:

void CollectableObject::HaveReference( CollectableObject* referencedObject) {
    if ( referencedObject != NULL)
        referencedObject->DoMark();
}

A more robust implementation would replace the recursion in this example with iteration, to
avoid the problems of stack overflow.  A more efficient implementation might use POOLED

ALLOCATION of the CollectableObjects, or might use an EMBEDDED POINTER to implement
the allCollectableObjects collection.

v v v

Known Uses
Any dynamic language with real pointers needs some form of garbage collection —  Lisp,
Smalltalk, Modula-3,and Java are just some of the best-known garbage collected languages.
Garbage collection was originally specified as part of Ada, although this was subsequently
deferred, and has been implemented many times for C++, and even for C [Jones and Lins
1996].
Mark-sweep garbage collectors are often used as a backup to reference counting systems, as in
some implementations of Smalltalk, Java, and Inferno [Goldberg and Robson 1983, Pike
1997].  The Mark-sweep collector is executed periodically or when memory is low, to collect
cycles and objects with many incoming references that would be missed by reference counting
alone.

See Also
REFERENCE COUNTING is an alternative to this pattern that imposes a high overhead on every
pointer assignment, and cannot collect cycles of references.

Systems that make heavy use of SHARING may benefit from some form of Garbage Collection.
Garbage Collection can also be used to unload PACKAGES from Secondary Storage
automatically when they are no longer required.

Garbage Collection [Jones and Lins 1996] is a very comprehensive survey of a complex field.
Richard Jones’ garbage collection web page [Jones 2000] and the Memory Management
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Reference Page [Xanalys 2000] contain up-to-date information about garbage collection. Paul
Wilson [1994] has also written a critical overview of garbage collection techniques.
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Appendix: A Discussion of Forces
Version   04/12/99 17:23 - 37

How do you find the patterns relevant to your specific system?

If you’re working on a project, the chances are you’re already asking yourself “Which of the
patterns in this book might I apply to my project?”

No serious software product ever had (or will have) as its mission purely to save memory.  If it
did, the solution would be simple: write no code!  But all real software has other aims and other
constraints.  In the words of the patterns community [Coplien 1996, Vlissides 1998] you have
other forces acting on you and your project.  Each pattern provides a solution to a problem in
the context of the forces acting on you as you make the decision.

A pattern’s forces capture the problem’s considerations and the pattern’s consequences, to help
you to decide when to use that pattern rather than another.  Each pattern’s initial problem
statement identifies the major force driving that pattern, discusses of other forces affecting the
solution. Then the pattern’s Consequences section identifies how the pattern affects the
configuration of the forces.

Some forces may be resolved by the pattern, that is, the pattern solves that aspect of the
problem, and these forces form a pattern’s positive benefits. Other forces may be exposed by
the pattern, that is, applying the pattern causes additional problems, and these forces form a
pattern’s liabilities.  You can then use further patterns to resolve the exposed forces, patterns
that in their turn expose further forces, and so on.

This appendix answers the question above by asking in return “What other constraints and
requirements do you have?”, or,

What are your most important forces?

Identifying your forces can lead you to a set of patterns that you may – or may not – choose to
use in your system.

Forces in this book
For all the patterns in this book the most important force is the software’s memory
requirements.  But there are other important forces.  The list below summarises most of the
forces we’ve identified.  In each case, a “yes” answer to the question generally means a benefit
to the project.

The forces are in three categories:

• Non-functional requirements
• Architectural impact on the system
• Effect on the development process

The following tables give a brief summary of each force.  The rest of this chapter examines
each force in more detail, exploring the patterns that resolve and that expose each one.

Memory Requirements Does the pattern reduce the overall memory use of the system?

Memory Predictability Does the pattern make the memory requirements predictable?  This is particularly
important for real-time applications, where behaviour must be predictable.

Scalability Does the pattern increase the range of memory sizes in which the program can
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function?

Usability Does the pattern tend to make the easier for users to operate the system?

Time Performance Does the pattern tend to improve the run-time speed of the system

Real-time Response Does the pattern support fixed and predictable maximum response times?

Start-up Time Does the pattern reduce the time between a request to start the system and its
beginning to run?

Hardware and O/S Cost Does the pattern reduce the hardware or operating system support required by the
system?

Power Consumption Does the pattern reduce the power consumption of the resulting system?

Security Does the pattern make the system more secure against unauthorised access or
viruses?

Table 1:  Forces Expressing Non-functional Requirements

Memory waste Does the pattern reduce the amount of memory in use but serving no purpose?

Fragmentation Does the pattern reduce the amount of memory lost through fragmentation?

Local vs. Global Does the pattern tend to help encapsulate different parts of the application, keeping
them more independent of each other?

Table 2: Forces Expressing Architectural Impact

Programmer Effort Does the pattern reduce the total programmer effort to produce a given system?

Programmer Discipline Does the pattern remove restrictions on programming style, so that programmers can
pay less attention to detail in some aspects of programming?

Maintainability and
Design Quality

Does the pattern encourage better design quality?   Will it be easier to make changes
to the system later on?

Testing cost Does the pattern reduce the total testing effort for a typical project?

Legal restrictions Will implementing the pattern be free from legal restrictions or licensing costs?

Table 3: Forces Representing the Effect on the Development Process

The table in the back cover summarises a selection of the most important of these forces,
illustrating how they apply to each of the patterns in the language.  Each cell contains ‘☺’ if
the pattern normally has a beneficial effect in that respect (a “yes” answer to the question in the
table above), ‘L’ if the pattern’s effect is detrimental.  A ‘K’ indicates that the pattern usually
has an effect, but that whether positive or negative depends on circumstances.

The remainder of this chapter examines each force in more detail.  For each force, we indicate
the patterns that best resolve it, and the patterns that regrettably often expose it.
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Forces related to non-functional requirements
The forces in this section concern the delivered system.  How will it behave?  Will it satisfy the
clients’ needs by being sufficiently reliable, fast, helpful and long-lived?

 Memory Requirements

Does the pattern reduce the overall memory use of the system?

The single most important force in designing systems for limited memory is, unsurprisingly
enough, the memory requirements of the resulting system – the amount of memory the system
requires to do its job.

Patterns that resolve this force
• All the patterns in this book (Chapters N to M) resolve this force in one way or another.

 Memory Predictability

Does the pattern make the memory requirements predictable?

Minimising a program’s absolute memory requirements is all very well, but often it is more
useful to know in advance whether a given program design can cope with its expected load,
precisely what its maximum load will be, and whether it will exhaust the memory available to
it. Often, increased memory requirements or reduced program capacity are better than random
program crashes.  In order to be able to determine that a program can support its intended load,
or that it will not run out of memory and crash, you need to be able to audit the program to
predict the amount of memory that it will require at runtime.

Predictability is particularly important for systems that must run unattended, where behaviour
must be guaranteed and reliability is essential.  In particular, life-critical systems must have
predictable requirements.  See, for example, the discussion in the FIXED ALLOCATION pattern.

Patterns that resolve this force
• FIXED ALLOCATION ensures your memory requirements do not change while the code is

running. You can calculate memory requirements exactly during the design phase.

• EMBEDDED POINTERS allow you to calculate memory requirements for linked collections
of objects easily.

• PARTIAL FAILURE permits pre-defined behaviour when memory runs out.

• A MEMORY LIMIT puts a constraint on the amount of memory used by any particular
component.

• DATA FILES and APPLICATION SWITCHING handle only a certain amount of data at a time,
potentially removing the chance of memory exhaustion.

• EXHAUSTION TEST verifies the system’s behaviour on heap exhaustion.

• CAPTAIN OATES releases memory from lower priority tasks making it possible to have
high priority tasks that complete reliably.

Patterns that expose this force
• VARIABLE ALLOCATION encourages a component to use unpredictable amounts of

memory.

• GARBAGE COLLECTION makes it more difficult to determine in advance precisely when
unused memory will be returned to the system.

• COMPRESSION (especially ADAPTIVE COMPRESSION) reduces the absolute memory
requirements for storing the compressed data, but by an unpredictable amount.
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• COPY-ON-WRITE obscures the amount of memory required for an object —   memory
only needs to be allocated when an object is first modified.

• MULTIPLE REPRESENTATIONS means that the amount of memory allocated to store an
object can vary considerably, and in some uses, dynamically.

 Scalability

Does the pattern increase the range of memory sizes in which the program can function?

Moore’s Law [1997] states that hardware capacity increases exponentially, which means than
the amount of memory available at any given cost decreases greatly over time.  As a result, the
amount of memory available tends to increase over time (or, rarely, the same devices can be
sold more cheaply) [Smith 1999].  So long-lasting software needs to be scalable to take
advantage of more memory if it is available.

Furthermore different users may have different amounts of money to spend, and different
perceptions of the importance of performance and additional functionality.  Such user choices
require scalable software too.

Patterns that resolve this force
• VARIABLE ALLOCATION adjusts the memory allocated to a structure to fit the number of

objects the structure actually contains, limited only by the available memory.

• PAGING and other SECONDARY STORAGE patterns allow a program access to more
apparent RAM, by storing temporarily unneeded information on secondary storage.
Adding more RAM improves the time performance of the system without affecting the
functionality.

• MULTIPLE REPRESENTATIONS allows the system to size its objects according to the
available memory.

Patterns that expose this force
• Designing a SMALL ARCHITECTURE requires you to make components responsible for

their own memory use and accepting this responsibility can sometimes increase the
complexity and decrease the performance of each component. The components bear
these costs even when more memory become available.

• FIXED ALLOCATION (and POOLED ALLOCATION from a fixed sized pool) require you to
commit to the size of a data structure early, often before the program is run or before
the data structure is used.

• SMALL DATA STRUCTURES, especially PACKED DATA, trade time performance to reduce
memory requirements. It can be hard to redesign data structures to increase
performance if more memory is available.

 Usability

Does the pattern tend to make the easier for users to operate the system?

Designing systems that use limited amounts of memory requires many compromises, and often
these reduce the usability —  ease of use, ease of learning, and user’s speed, reliability and
satisfaction —  of the resulting system [Shneiderman 1997].

Usability is a complex, multifaceted concern, and we address it in this book only insofar as the
system usability is directly affected by the memory constraints.

Patterns that resolve this force
• PARTIAL FAILURE ensures the system can continue to operate in low memory conditions.
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• CAPTAIN OATES allows the system to continue to support users’ most important tasks by
sacrificing less important tasks.

• Other ARCHITECTURAL PATTERNS can make help make a system more consistent and
reliable, and so more usable.

• Using SMALL DATA STRUCTURES can increase the amount of information a program can
store and manipulate, to users’ direct benefit.

• PAGING  makes the system’s memory appear limitless, so users do not need to be
concerned about running out of memory.

Patterns that expose this force
• SECONDARY STORAGE patterns make users aware of different kinds of memory.

• APPLICATION SWITCHING makes users responsible for changing between separate
‘applications’, even though the may not see any reason for the separation of the system.

• FIXED  ALLOCATION can make a system’s memory capacity (or lack of it) directly and
painfully obvious to the system’s users.

Time Performance

Does the pattern tend to improve the run-time speed of the system?

Being small is not enough; your programs usually have to be fast as well.  Even where
execution speed isn’t an absolute requirement, there’ll always be someone, somewhere, who
wants it faster.

Patterns that resolve this force
• FIXED ALLOCATION can assign fixed memory locations as the program is compiled, so

they can be accessed quickly using absolute addressing.

• MEMORY DISCARD and POOLED ALLOCATION support fast allocation and de-allocation.

• MULTIPLE REPRESENTATIONS allows you to have memory-intensive implementation of
some objects to give fast performance without incurring this overhead for every
instance.

• EMBEDDED POINTERS can support fast traversal and update operations on link-based
collections of objects.

• Most GARBAGE COLLECTION algorithms do not impose any overhead for memory
management on pointer manipulations.

Patterns that expose this force
• VARIABLE ALLOCATION and deallocation cost processing time.

• COMPRESSION, especially ADAPTIVE COMPRESSION, requires processing time to convert
objects from smaller compressed representations to larger computable representations.

• COMPACTION similarly requires processing time to move objects around in memory.

• Most SECONDARY STORAGE patterns, especially PAGING, uses slower secondary storage
in place of faster primary storage.

• REFERENCE COUNTING requires up to two reference count manipulations for every
pointer manipulation.

• PACKED DATA is typically slower to access than unpacked data.
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• SMALL INTERFACES pass small amounts of data incrementally, which can be much
slower than passing data in bulk using large buffer structures.

• CAPTAIN OATES can take time to shut down tasks or components.

• Indirect memory accesses via HOOKS can reduce the system’s time performance.

 Real-time Response

Does the pattern support fixed and predictable maximum response times?

Just as predictability of memory use —  and the resulting stability, reliability, and confidence in
a program’s performance —  can be as important or more important than the program’s
absolute memory requirements, so the predictability of a program’s time performance can be
more important than its absolute speed.

This is particularly important dealing with embedded systems and communications drivers,
which may have real-world deadlines for their response to external stimuli.

Patterns that resolve this force
• FIXED ALLOCATION , MEMORY DISCARD, and POOLED ALLOCATION usually have a

predictable worst case performance.

• EMBEDDED POINTERS can allow constant-time traversals between objects in linked data
structures.

• SMALL INTERFACES ensure fixed amounts of data can be passed between components in
fixed amounts of time

• SEQUENCE COMPRESSION can compress and decompress simple data streams in fixed
amounts of time per item.

• REFERENCE COUNTING amortises memory management overheads at every pointer
manipulation, and so does not require random pauses during a system’s execution.

Patterns that expose this force
• VARIABLE ALLOCATION can require unpredictable amounts of time

• The time required by most ADAPTIVE COMPRESSION algorithms is dependent on the
content of the information it is compressing.

• Some implementations of MEMORY COMPACTION may sporadically require a large
amount of time to compact memory.  If compaction is invoked whenever a standard
allocator cannot allocate enough contiguous memory, then allocation will take varying
amounts of time, and this performance will degrade as the free space decreases.

• Many SECONDARY STORAGE patterns take extra time (randomly) to access secondary
storage devices.

• COPY-ON-WRITE  requires time to make copies of objects being written to.

 Start-up Time

Does the pattern reduce the time between a request to start the system and its beginning to
run?

Start-up time is another force that is related to execution time, but clearly independent of both
absolute performance and real-time response.  For embedded systems, and even more crucially
for PDAs and mobile phones, the time between pressing the ‘on’ switch and accomplishing
useful work is vital to the usability and marketability of the system.



Appendix: A Discussion of Forces UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 7

Patterns that resolve this force
• PACKAGES and APPLICATION SWITCHING allow a main module to load and start

executing quickly; other modules load and execute later.

• READ ONLY MEMORY allows the CPU to access program code and resources
immediately a program starts, without loading from secondary storage

• SHARING of executable code allows a new program to start up quickly if the code is
already running elsewhere; SHARING of data reduces initial allocation times.

• MEMORY DISCARD can allocate objects quickly at the start of the program.

• VARIABLE ALLOCATION defers allocation of objects until they are needed.

• COPY-ON-WRITE avoids an initial need to allocate space and copy all objects that might
possibly change; copying happens later as and when necessary.

Patterns that expose this force
• FIXED ALLOCATION  and POOLED ALLOCATION require time to initialise objects or pools

before the program begins running.

• COMPRESSION can require time to uncompress code and data before execution.

• Initialising from DATA FILES and RESOURCE FILES on SECONDARY STORAGE all takes
time.

 Hardware and Operating System Cost

Does the pattern reduce the hardware or operating system support required by the system?

Hardware or operating systems can provide facilities to directly support some of the patterns
we have described here. Obviously, it makes sense to use these facilities when they are
provided, if they address a need in your design.  Without such support, you may be better off
choosing an alternative pattern rather than expending the effort required emulating it yourself.

Patterns that expose this force
• CAPTAIN OATES needs a mechanism for individual tasks within a system to determine the

system’s global memory use, and ideally a means to signal memory-low conditions to
all programs.

• GARBAGE COLLECTION is often provided in the virtual machines or interpreters for
modern programming languages, or as libraries for languages like C++.

• RESOURCE FILES and PACKAGES need to load binary data such as executable files or font
and icon files into running programs. This is easiest if implemented  in the operating
system.

• PAGING is much more efficient if it uses the page and segment tables of your processor,
and in practice this requires operating system support.

• Similarly, COPY-ON-WRITE is implemented most efficiently if it can use hardware page
table write protection faults.

 Power Consumption

Does the pattern reduce the power consumption of the resulting system?

Battery-powered systems, such as hand-helds, palmtop computers and mobile phones, need to
be very careful of their power consumption.  You can reduce power consumption by avoiding
polling, avoiding long computations, and by switching off power-consuming peripherals.
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Patterns that resolve this force
• READ-ONLY MEMORY often requires no power to keep valid.

Patterns that exposethis force
• SECONDARY STORAGE devices, such as battery-backed RAM and disk drives, consume

power when they are accessed.

• COMPRESSION algorithms need CPU power to compress and uncompress data.

• PAGING is particularly bad, since it can require secondary storage devices to be running
continuously on battery power.

Security

Does the pattern make the system more secure against unauthorised access or viruses?

Security is increasingly important, with the advent of the Internet and private information being
stored on insecure desktop or palmtop computers.  As with forces like memory predictablity
and real-time response, its generally not enough to claim that a system is secure, you also need
to be able to audit the implementation of the system to see how it is built.

Patterns that resolve this force
• Information stored in READ-ONLY MEMORY cannot generally be changed so should

remain sacrosanct.

Patterns that expose this force
• SECONDARY STORAGE devices, especially if used by PAGING,  may store unsecured copies

of sensitive information from main memory.

• PACKAGES can allow components of the system to be replaced or extended by other,
insecure or hostile, versions.

• HOOKS  allow nominally read-only code and data to be changed, allowing the
introduction of viruses.

Architectural Impact
We can identify a different set of forces that affect the delivered system less directly – they’re
visible to the developers more than to the end-users.

Memory Waste

Does the pattern reduce the amount of memory in use but serving no purpose?

Some design approaches waste memory.  For example low priority tasks may keep unnecessary
caches; fully featured, large, objects may be allocated where smaller and more Spartan versions
would do; and allocated objects may sit around performing no useful purpose.

Clearly it’s generally good to avoid such wasted memory, even if in some cases it’s worth
accepting the penalty in return for other benefits.

Patterns that resolve this force
• MULTIPLE REPRESENTATIONS avoids unnecessarily memory-intensive instances of

objects when a more limited representation will do the job.

• SHARING and COPY-ON-WRITE can prevent redundant copies of objects.

• PACKED DATA reduces the amount of memory required by data strucutres.

Patterns that expose this force
• FIXED ALLOCATION and POOLED ALLOCATION tend to leave unused objects allocated.
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• Objects allocated by VARIABLE ALLOCATION can become memory leaks if they are no
longer used and have not been explicit deleted.

• REFERENCE COUNTING and GARBAGE COLLECTION can also have memory leaks –
objects that are no longer in use, but are still reachable from the system root.

• MEMORY LIMITS can waste memory by preventing components from using otherwise
unallocated memory.

• ADAPTIVE COMPRESSION often needs to uncompress large portions of data into memory,
even when much of it isn’t required.

Fragmentation

Does the pattern reduce the amount of fragmentation?

Fragmentation causes memory to be unusable because of the behaviour of memory allocators,
resulting in memory that is allocated but can never be used (internal fragmentation) or that has
been freed but can never be reallocated (external fragmentation). See MEMORY ALLOCATION for
a full discussion of fragmentation.

Patterns that resolve this force
• MEMORY COMPACTION moves allocated objects in memory to prevent external

fragmentation.

• FIXED ALLOCATION and POOLED ALLOCATION avoid allocating variable-sized objects,
also avoiding external fragmentation.

• MEMORY DISCARD avoids fragmentation – stack allocation has no fragmentation waste
and discarding a heap discards the fragmentation along with it.

• APPLICATION SWITCHING can avoid fragmentation by discarding all the memory
allocated by an application and starting over again.

Patterns that expose this force
• VARIABLE ALLOCATION supports dynamic allocation of variable sized objects, causing

fragmentation dependent on your memory allocation algorithm.

• FIXED ALLOCATION and POOLED ALLOCATION generate internal fragmentation when they
allocate variable-sized objects.

Local vs. Global Coupling

Does the pattern tend to help encapsulate different parts of the application, keeping them
independent of each other?

Some programming concerns can be merely a local concern. For example stack memory is
local to the method that allocates it.  The amount of memory is determined directly by that
method and affects only invocations of that method and any method called from it.

In contrast the amount of memory occupied by heap objects is a global concern.  Methods can
allocate many objects that exist after the method returns, and so the amount of memory
allocated by such a method can affect the system globally.  Some patterns can affect the
balance between local and global concerns in a program, requiring local mechanisms to achieve
global results or, on the other hand, imposing global costs to produce a local effect.

Patterns that resolve this force
• SMALL ARCHITECTURE and SMALL INTERFACES describe how program modules and their

memory consumption can be kept strictly local.
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• PACKED DATA and other SMALL DATA STRUCTURES can be applied to a local design for
each structure, allowing redesign without affecting other components.

• MULTIPLE REPRESENTATIONS can change data structure representations dynamically,
without affecting the rest of the program.

• POOLED ALLOCATION and MEMORY LIMITS can localise the effects of dynamic memory
allocation to within a particular module.

• MEMORY DISCARD allows a set of local objects to be deleted simultaneously.

• PAGING allows most system code to ignore issues of secondary storage.

• REFERENCE COUNTING and GARBAGE COLLECTION allow decisions about deleting objects
shared globally to also be made globally.

Patterns that expose this force
• PARTIAL FAILURE and CAPTAIN OATES require local support within programs to provide

support for graceful degradation globally throughout the program.

• VARIABLE ALLOCATION shares memory between different components over time, so the
local memory used by one component affects the global memory available for others.

• SHARING potentially introduces coupling between every client object sharing a given
item.

• EMBEDDED POINTERS require local support within objects so that they can be members
external (global) collections.

Development Process
The following forces concern the development process.  How easy will it be to produce the
system, to test it, to maintain it?  Will you get management problems with individual
motivation, with team co-ordination, or with the legal implications of using the techniques?

 Programmer Effort

Does the pattern reduce the total programmer effort to produce a given system?

The cost of programmer time far exceeds the cost of processor time for all but the most
expensive supercomputers (and for all except the cheapest programmers) – unless the software
is very widely used.  Some patterns tend to increase implementation effort, while others can
reduce it.

Patterns that resolve this force
• VARIABLE ALLOCATION doesn’t require you to predict memory requirements in advance.

• GARBAGE COLLECTION means that you don’t have to worry about keeping track of
object lifetimes.

• HOOKS allow you to customise code without having to rewrite it.

• MEMORY DISCARD  makes it easy to deallocate objects.

• PAGING transparently uses secondary storage as extra memory.

Patterns that expose this force
• PARTIAL FAILURE and CAPTAIN OATES can require you to implement large amounts of

checking and exception handling code.
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• COMPRESSION patterns (especially ADAPTIVE Compression) may require you to
implement compression algorithms or learn library interfaces.

• COMPACTION requires effort to implement data structures that can move in memory.

• Most SECONDARY STORAGE patterns require programmers to move objects explicitly
between primary and secondary storage.

• SMALL DATA STRUCTURES can require you to reimplement parts of your program to
optimise its memory use.

• EMBEDDED POINTERS can require you to rewrite common collection operations for every
new collection of objects.

Programmer Discipline

Does the pattern remove restrictions on programming style, so that programmers can pay
less attention to detail in some aspects of programming?

Some patterns depend upon you to pay constant attention to small points of detail, and
carefully follow style rules and coding conventions.  Following these rules requires a high level
of concentration, and makes it more likely you will make mistakes.  Of course once learned the
rules do not greatly reduce your productivity, or increase the overall effort you will need to
make.

Some patterns (like PAGING) reduce programmer discipline by using automatic mechanisms,
but require effort to implement those mechanisms; others, like REFERENCE COUNTING, require
discipline to use but do not take much effort to implement.

Patterns that resolve this force
• GARBAGE COLLECTION automatically determines which objects are no longer in use and

so can be deleted, avoiding the need to track object ownership.

• PAGING uses secondary storage to increase the apparent size of main memory
transparently, avoiding in many cases the discipline of PARTIAL FAILURE.

• COPY-ON-WRITE means that clients can safely modify an object regardless of whether it
is SHARED or in READ-ONLY MEMORY.

Patterns that expose this force
• A SMALL ARCHITECTURE requires discipline to keep system and component wide

policies about memory use, and to use READ-ONLY MEMORY and RESOURCE FILES as
appropriate.

• PARTIAL FAILURE requires you to cater for memory exhaustion in almost all the code
you write.

• CAPTAIN OATES may require you to implement ‘good citizen’ code that doesn’t add to
your current component’s apparent functionality.

• REFERENCE COUNTING and COMPACTION may require you to use special handle objects
to access objects indirectly.

• POOLED ALLOCATION and MEMORY DISCARD require careful attention to the correct
allocation, use, and deallocation of objects, to avoid dangling pointers or memory leaks.

• You have to include HOOKS into the design and implementation of your components so
that later users can customise each component to suit their requirements.
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• Using COMPRESSION routinely (say for all string literals) makes programming languages
literal facilities much harder to use.

• EMBEDDED POINTERS require care when objects can belong to multiple collections.

Design Quality and Maintainability

Does the pattern encourage better design quality?   Will it be easier to make changes to the
system later on?

Some design and programming techniques make it easier for later developers to read,
understood, and subsequently change the system.

Patterns that resolve this force
• Taking the time to design a SMALL ARCHITECTURE and SMALL DATA STRUCTURES

increases the quality of the resulting system.

• HOOKS allow a program’s code to be extended or modified by end users or third parties,
even if the code is stored in READ ONLY MEMORY.

• PARTIAL FAILURE supports other failure modes than memory exhaustion, such as
network faults and disk errors.

• SMALL INTERFACES reduce coupling between program components.

• MULTIPLE REPRESENTATIONS allow objects implementations to change to suit the way
they are used.

• SHARING reduces duplication between (and within) the components of a system.

• RESOURCE FILES and PACKAGES allow a program’s resources —  literal strings, error
messages, screen designs, and even executable components —  to change without
affecting the program’s code.

• REFERENCE COUNTING, GARBAGE COLLECTION and PAGING allow you to make global
strategic decisions about deleting objects or using secondary storage.

• APPLICATION SWITCHING based on scripts can be very easily modified.

Patterns that expose this force
• FIXED ALLOCATION’S fixed structures can make it more difficult to change the volume of

data that can be processed by the program.

• Code and data stored in READ ONLY MEMORY can be very difficult to change or
maintain.

• APPLICATION SWITCHING can reduce a system’s design quality when it forces you to
split functionality into executables in arbitrary ways.

• PACKED DATA structures can be hard to port to different environments or machines.

• Collections based on EMBEDDED POINTERS are hard to reuse in different contexts.

 Testing cost

Does the pattern reduce the total testing effort for a typical project?

It’s not enough just to code up your program; you also have to make sure it works reliably
(unless your product commands a monopoly in the market!). If you care about reliability,
choose patterns that decrease the cost of testing the program, so that you can test more often
and more thoroughly.
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Patterns that resolve this force
• FIXED ALLOCATIONS are always the same size independent of program loading, so they

always run out of capacity at the same time.  This simplifies exhaustion testing.

• READ-ONLY MEMORY is easier to test because its contents are unable to change.

• DATA FILES and RESOURCE FILES help testing because you can use versions of the files to
set up different test scenarios.

Patterns that expose this force
• VARIABLE ALLOCATION, POOLED ALLOCATION, MEMORY DISCARD, MEMORY LIMIT, and

MULTIPLE REPRESENTATIONS require testing to check changes their in sizes and
representations.

• PARTIAL FAILURE and CAPTAIN OATES have to be tested to check their behaviour both
when memory is scarce, but also when it is abundant.

• COMPRESSION implementations should be  tested to see that they perform in exactly the
same way as implementations that don’t use compression.

• Any kind of SHARING (including HOOKS and COPY-ON-WRITE) has to be exhaustively
tested from the perspective of all clients of any shared objects, and also for any
potential interactions implicitly communicated between clients via the shared object.

Legal restrictions

Will implementing the pattern be free from legal restrictions or licensing costs?

Some programming techniques are subject to legal restrictions such as copyrights and patents.
Choosing to use these techniques may require you to pay license fees to the owner of the
copyright or patent.  Yet using third party software or well-known techniques is a crucial
component of good practice in software development —  indeed, making existing practices
better known is the aim of this book.

Alternatively, some free software (aka Open Source) licences, notably the GNU General Public
License, may require you to release some or all of your software with similar licence
conditions. However the open source community is actively working to develop alternatives to
proprietary techniques that can often be incorporated into all types of software without
imposing onerous conditions onto the software development.

Patterns that expose this force
• FILE COMPRESSION algorithms from third parties are often subject to copyright or patent

restrictions.

• GARBAGE COLLECTION and sophisticated VARIABLE ALLOCATION libraries usually come
as proprietary software.



 

Pattern Summaries – Small Memory Software 
© 2004 Charles Weir, James Noble. 

Major Technique: Small Architecture  
How can you manage memory use across a whole system?  Make every component 
responsible for its own memory use. 

Memory Limit  How can you share out memory between multiple competing components?  
Set limits for each component and fail allocations that exceed the limits. 

Small Interfaces How can you reduce the memory overheads of component interfaces?  
Design interfaces so that clients control data transfer. 

Captain Oates How can  you fulfil the most important demands for memory?  Sacrifice 
memory used by less vital components rather than fail more important tasks. 

Read-Only Memory What can you do with read-only code and data?  Store read-only code 
and data in read-only memory. 

Hooks How can you change information in read-only storage?  Access read-only information 
through hooks in writable storage and change the hooks to give the illusion of changing the 
information. 

Major Technique: Secondary Storage 
What can you do when you have run out of primary storage?  Use secondary storage as extra 
memory at runtime. 

Application Switching  How can you reduce the memory requirements of a system that 
provides many different functions?  Split your system into independent executables, and run 
only one at a time. 

Data File Pattern What can you do when your data doesn’t fit into main memory?  Process 
the data a little at a time and keep the rest on secondary storage. 

Resource Files Pattern How can you manage lots of configuration data?  Keep configuration 
data on secondary storage, and load and discard each item as necessary. 

Packages How can you manage a large program with lots of optional pieces?  Split the 
program into packages, and load each package only when it’s needed. 

Paging Pattern How can you provide the illusion of infinite memory?  Keep a system’s code 
and data on secondary storage, and move them to and from main memory as required. 

Major Technique: Compression 
How can you fit a quart of data into a pint pot of memory?  Use a compressed representation 
to reduce the memory required. 

Table Compression Pattern How do you compress many short strings?  Encode each 
element in a variable number of bits so that the more common elements require fewer bits. 

Difference Coding Pattern How can you reduce the memory used by sequences of data?  
Represent sequences according to the differences between each item. 

Adaptive Compression Pattern How can you reduce the memory needed to store a large 
amount of bulk data?  Use an adaptive compression algorithm. 



 

Major Technique: Small Data Structures 
How can you reduce the memory needed for your data?  Choose the smallest structure that 
supports the operations you need.  

Packed Data How can you reduce the memory needed to store a data structure?  Pack data 
items within the structure so that they occupy the minimum space. 

Sharing How can you avoid multiple copies of the same information?  Store the information 
once, and share it everywhere it is needed. 

Copy-on-Write How can you change a shared object without affecting its other clients?  
Share the object until you need to change it, then copy it and use the copy in future. 

Embedded Pointer How can you reduce the space used by a collection of objects?  Embed 
the pointers maintaining the collection into each object. 

Multiple Representations How can you support several different implementations of an 
object?  Make each implementation satisfy a common interface.  

Major Technique: Memory Allocation 
How do you allocate memory to store your data structures?  Choose the simplest allocation 
technique that meets your need. 

Fixed Allocation How can you ensure you will never run out of memory?  Pre-allocate 
objects during initialisation. 

Variable Allocation How can you avoid unused empty space?  Allocate and deallocate 
variable-sized objects as and when you need them. 

Memory Discard How can you allocate temporary objects?  Allocate objects from a 
temporary workspace and discard it on completion. 

Pooled Allocation How can you allocate a large number of similar objects?  Pre-allocate a 
pool of objects, and recycle unused objects. 

Compaction How do you recover memory lost to fragmentation?  Move objects in memory to 
remove unused space between them. 

Reference Counting How do you know when to delete a shared object?  Keep a count of the 
references to each shared object, and delete each object when its count is zero. 

Garbage Collection How do you know when to delete shared objects? Identify unreferenced 
objects, and deallocate them. 
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Abstract:   
This paper describes some process patterns for teams to follow when creating 
software to run in limited memory.   

It is a draft version of a chapter to add to the authors’ book Small Memory Software, 
and follows the structure of other chapters in that book. 

Major Technique: Thinking Small 
A.k.a Small methodology, ‘Real’ programming. 

How should you approach a small system? 

• You’re developing a system that will be memory-constrained. 

• There are many competing constraints to satisfy 

• If different developers take different views on which things to optimise, they 
will produce an inconsistent system that satisfies none of the constraints. 

You're working on a project and you suspect there will be resource limitations in the 
target system. For example, the developers of the ‘Super-spy 007’ version for the 
Strap-it-On wrist-mounted computer face a system with only 200 Kb of RAM and 2 
Mb ROM.  How are they to adjudicate the demands of the voice recognition 
software, the vocabularies and the software-based radio, to make it a secret agent's 
dream toy?  Should they store the vocabularies in ROM to save RAM space, or keep 
them in RAM to allow them to change from Russian to Arabic on the fly?  What, in 
short, is important in their system, and what is less so? 

In many projects it’s clear from the outset that the development team will have to 
spend at least some time and effort satisfying the system’s memory limitations. You 
have to cut your coat to fit your cloth.  Yet if the team just spends lots of effort 
optimising everything to work in very limited memory, they'll waste a lot of time or 
maybe produce a product that could have been much better.  Worse still the product 
may fail to work at all because they have been optimising the wrong thing. 

For example, any of the following facilities may be limited: 

• Heap (RAM) space for the whole system 
• Heap space  for individual processes (if the maximum heap size of a process 

is fixed) 
• Process stack size 
• Secondary storage use 
• ROM space (for programs that execute from ROM) 

Optimising one of these will often be at a cost from one of the others.  In addition 
techniques that optimise memory use will tend to compromise time-performance, 
usability or both.  

In any system the architects will have to moderate the demands of different 
components in the system against each other.  That is a big and highly sensitive task.  
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Software programmers tend to take their design decisions seriously, so capricious 
decisions can cause friction or worse within a development team. 

You might hope to use clever techniques to defer the key decisions about these 
priorities until later in the project, when you’ll know more about the implementation.  
But in practice many of the most important strategic decisions cannot be deferred, as 
they pervade the entire system and provide a framework for later decisions.  Such 
strategic decisions are reflected, for example, in the interfaces between components, 
in the trade-off between ROM and RAM, and in the question of whether or not to use 
Partial Failure in components. 

Design decisions about the trade-offs based on just individual designers' foibles, on 
gut feel or on who shouts loudest will lead neither to consistent successful designs, 
nor to a harmonious development.  You'll need a more objective approach. 

Therefore:  Devise a memory strategy for the entire project.   

First draw up a crude MEMORY BUDGET of the likely available resources in each of 
the categories above.  If the figures are flexible (for example, if the system is to run 
on standard PCs with variable configurations and other applications), then estimate 
or negotiate target values with clients.  Meanwhile, also estimate very approximately 
the likely memory needs of the system you're developing.  Identify the tensions 
between the two.   Identify the design decisions that will significantly challenge the 
memory use, and ensure these decisions happen early. 

Based on this comparison you'll be in a position to identify which constraints are 
most vital.  It may be a constraint on one of the forms of memory in the system.  
Other constraints – time constraints, reliability, usability – may also be as or more 
important.  

Enshrine these priorities as a core ‘given’ for everyone working on the project.   
Ensure that absolutely everyone working on the team understands the priorities.  
Write the strategy in a document; make presentations; distribute the T-shirt!  
Indoctrinate each new developer who joins the team afterwards with the same 
priorities.   

Once you’ve identified your priorities, you’ll be in a position to plan how to 
approach the rest of the project.  You may need a formal MEMORY BUDGET, or 
perhaps MEMORY TRACKING.  Or you may choose to leave MEMORY OPTIMISATION 
until near the end of the project.  Depending on the nature of the system, you may 
need to plan for EXHAUSTION TESTING, or assign time to PLUG THE LEAKS. 

For example, the developers of the ‘Super-spy 007’ decided the important priority 
was the constraint on RAM, since RAM memory provided the only storage – and a 
reset might then erase vital information about the Master Villain’s plans to destroy 
the world!  The next priority was user response (to give a quick response in 
dangerous situations).  So the components and interfaces are designed to minimise 
this memory use, and then to give reasonable user response. 

Consequences 
Every member of the team will understand the priorities.  Individual designers will be 
able to make their own decisions knowing that the decisions will fit within the wider 
context of the project.  Design decisions by different teams will be consistent, adding 
to the coherence of the system developed. 

You can estimate the impact of the memory constraints on project timescales, 
reducing the uncertainty of the project. 
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The initial estimates of memory needs can provide a basis for a more formal MEMORY 
BUDGET for the project. 

However:  Deciding the strategy takes time and effort at an important stage of a project.   

Sometimes later design decisions, functionality changes, or hardware modifications 
may modify the strategy; this invalidates the earlier design decisions, so might leave 
the project in a worse position than if individuals had taken random decisions. 

Implementation Notes 
Sometimes it’s not necessary to make the strategy explicit.  Many projects work in a 
well-understood context.  For example an MS-Windows 'shrink-wrapped' application 
can assume a total system size of more than 12Mb RAM (and more than 30Mb paged 
memory), about 50Mb disk and program space – as we can deduce by studying any 
number of ‘industry standard’ applications. 

So MS Windows developers share an unwritten understanding of the memory 
requirements of a typical program.  The strategy of all these Windows applications 
and the trade-offs will tend to be similar, and these are often encapsulated in the 
libraries and development environments or in the standard literature.  Given this 
‘implicit strategy’ it may be less necessary to define an explicit one; any programmer 
who has worked on a similar project or read up the literature will unconsciously 
choose appropriate trade-offs. 

However having an implicit strategy for all applications can cause designers and 
programmers to overlook lesser but still significant variations in a specific project.  
For example a Windows photograph editor will randomly access large amounts of 
memory. So it may have to assume (and explicitly demand) rather more real, rather 
than paged, memory than other 'standard' applications. 

Developers from Different Environments 

Programmers and designers used to one strategy often have very great difficulty 
changing to a different one.   For example, many MS Windows programmers coming 
to the EPOC or Palm operating systems have great difficulty internalising the idea 
that programs must run indefinitely even if there’s a possibility of running out of 
memory.  Windows CE developers have even more of a problem with this, as the 
environment is superficially similar to normal Windows.   

Yet if such programmers continue to program in their former ‘large workstation’ 
paradigms, the resulting code has poor quality, and often doesn’t satisfy user needs.  
The developers need to adapt to the new strategies. 

One excellent way to promote such ‘Thinking Small’ is to exaggerate the problem.  
Emphasise the smallness of the system.  Make all the developers imagine the system 
is smaller than it is!  And encourage every team member to keep a very tight control 
on the memory use.   Ensure that each programmer knows which coding techniques 
are efficient in terms of memory, and which are wasteful.  You can use design and 
code reviews to exorcise wasteful features, habits and techniques. 

In this way you can develop a culture where memory saving is a habit.  Wonderful! 

Guidelines for Small System Development 

The following are some principles for designing memory limited software: 

Design small, code small You need to build in memory saving into the design as 
well as into the code of individual components.  The 
design provides much more scope for memory saving 
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than code. 

Create bounds Avoid unbounded memory use.  Unlimited recursion, or 
algorithms without a limit on their memory use, will 
almost certainly eventually cause irritating or fatal 
system defects. 

Design for the default case It’s always tempting to design your standard object data 
structures to handle every possible case.  But this 
approach tends to waste memory.  It’s better to design 
objects so that their default data structure handles only 
the simplest case, and have extension objects [Beck ?] 
to handle special cases. 

Minimise lifetimes Heap- and stack- based objects cease to take up memory 
when they’re deleted.  You can save significant memory 
by ensuring that this happens as early as possible [KenA 
list in Cacheable Expression] 

 

Extreme vs. Traditional Projects 

There are many different styles for teams working on software development.  To 
highlight some of the differences, we’ll contrast two opposing styles:   ‘Traditional 
Development’ and ‘Extreme Programming’. 

Traditional development [Gilb], [DeMarco] derives its processes and targets from the 
project controlling techniques used successfully in other engineering disciplines.  
Each developer is responsible for there own areas of code.  A project starts with the 
team agreeing or receiving a set of specifications from clients at the start of the 
project – typically as a Functional Specification document.  If the project is large 
enough, a design team will next decide on the architecture and specify the software 
components for the system.  Then separate teams will work on written designs for 
each component and for the interfaces between them.  Finally each team works 
separately on implementing each component, usually with each programmer 
responsible for a section of the code and functionality.   Either the component 
programmers or a different team will be responsible for component testing, and then 
for system testing.  Finally the system is ‘released’ and shipped to the customer, 
followed by either new projects to modify the functionality, or ‘maintenance’ to fix 
defects and shortcomings as required. 

In the ‘Extreme Programming’ style of development, there is a single development 
team of up to about twelve programmers.  Development works in short cycles of a 
week or so, each cycle culminating in a release – which may potentially be shipped to 
a customer.  The team interacts strongly with their customer to develop only the most 
important features in each cycle.  Programmers always work in pairs, develop 
complete test code before any implementation, have a strong emphasis on 
‘refactoring’ existing code to satisfy new requirements, and eschew formal design 
documentation. 

One might compare the two approaches to two different ways of house building.  A 
property speculator will create a building by hiring a number of professionals, and 
arranging for the design to be done first, the builders to ready at the right time to 
start, the plumbers to be available when the builders have finished the shell, etc.  
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Extreme programming is more like a couple building their own house.  They create 
the shell, make one room liveable, and take on new projects to improve their facilities 
and add new rooms when time and money permit.   

 [Insert here.  How you use the patterns in a traditional project.  How you use the 
patterns in an Extreme Project.  Get feedback from Kent Beck.] 

In a traditional project the architectural strategy is a part of the architect’s Vision 
[?ref.  JD?].    

In an XP project, the strategy will best be reflected in the project ‘metaphor’.  [XP 
?Wiki].  Individual memory constraints are reflected as ‘stories’, which become test 
cases that every future system enhancement must support. 

Specialised Patterns 
The rest of this chapter introduces six further ‘process patterns’ commonly used in 
organising projects with limited memory.  Process patterns differ from design 
patterns in that they describe what you do – the process you go through – rather than 
the end result.   

These patterns apply to virtually all small memory projects, from one-person 
developments to vast systems involving many teams of developers scattered 
worldwide.  Throughout this chapter we’ll use the phrase ‘development teams’ to 
mean ‘all of the people working on the project’.  If you’re working alone, you should 
read this as referring to yourself alone; if a single team, then it refers to just that 
team; if a large project, it refers to all the teams. 

Equally, the patterns themselves work at various levels of a project’s organisation.  
Suppose you’re working on the implementation of the Strap-It-OnTM wristwatch 
computer.  The overall project designers (‘system architecture team’) will use each 
pattern to examine the interworking of all the components in the system.  Each 
separate development team can use the patterns to control their implementation of 
their specific component, working within the parameters and constraints defined by 
the system architecture team. 

The patterns are as follows: 

Memory Budget How do you keep control in a project where memory is very 
tight? Draw up a memory budget, and plan the memory use of each 
component in the system. 

Featurectomy  How do you ensure you have an implementable set of system 
requirements given the system restraints?  Negotiate with the clients, 
users and requirements specification teams to produce a specification 
to satisfy both users needs and the system’s memory constraints. 

Memory Tracking How do you find out if the implementation you’re working 
on will satisfy your memory requirements? Track the memory use of 
each release of the system, and ensure that every developer is aware 
of the current score 

Memory Optimisation How do you stop memory constraints dominating the design 
process to the detriment of other requirements? Implement the 
system, paying attention to memory requirements only where these 
have a significant effect on the design.  Once the system is working, 
identify the most wasteful areas and optimise their memory use. 
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Plugging the Leaks How do you ensure your program recycles memory 
efficiently? Test your system for memory leakage and fix the leaks. 

Exhaustion Test How do you ensure that your programs work correctly in out 
of memory conditions?   Use testing techniques that simulate 
memory exhaustion. 

Program
Chaining

Think Small

Memory BudgetFeaturectomy

Memory
Tracking

Exhaustion Test

Memory
Performance
Assessment

Plugging the
Leaks

 

Figure 1: Process Pattern Relationships 

Known Uses 
The EPOC operating system is ported to many different telephone hardware 
platforms; each has a different configuration of ROM, RAM and Flash (persistent) 
memory.   So each environment has a different trade-off and application strategy.  
Some have virtually unlimited non-persistent RAM; others (such as the Psion Series 
5) use their RAM for persistent storage so must be extremely parsimonious with it.   

In each case, the memory strategy is reflected in the choice of Data Structures, in 
User Interfaces, and in the use of Secondary Storage.   The Psion Series 5 
development used an implicit strategy, passed by word of mouth.  Later ports have 
had an explicit strategy documents. 

See Also 
THINKING SMALL provides a starting point for a project. Most of the other patterns in 
this book have trade-offs that we can evaluate only in the context of a memory 
strategy.  
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Memory Budget Pattern 
A.k.a. Memory Costings 

How do you keep control in a project where memory is very tight? 

• You’re doing a project where memory is limited and there’s a risk that the 
project will fail if its memory requirements exceed these limits. 

• You have several different components or tasks using memory 

• Different individuals or teams may be responsible for each. 

• Saving memory costs effort – better let someone else do it! 

• Unnecessary optimisation would waste programmer time. 

You are working on a software development project, and you’ve identified that 
there’s a possibility that memory constraints may be a significant problem.  

For example, the whole Strap-It-On project is obviously limited by memory from the 
beginning. The Strap-It-On needs to be as small, as cheap, and as low-powered as 
possible, but also be usable by computer novices and have enough capacity to be 
adopted and recommended by experts. 

If you don’t take sufficient care of the memory constraints in the system design and 
implementation, bad things will happen to the project.  Perhaps the system will fail to 
work at all; perhaps users will get inadequate performance or functionality; or 
perhaps the cost of the extra memory hardware will make the software unsaleable. 

You could have everyone involved design and code so as to reduce their memory 
requirements to the bare minimum.  That would certainly reduce the risk of the 
system becoming too big.  But there are be costs to this scorched earth approach – if 
you concentrate on keeping memory low, then you’ll have to accept trade-offs 
elsewhere such as poor time performance, difficult-to-use interfaces or large amounts 
of developer effort.  It would be poor engineering to concentrate on one aspect, 
memory use, to the exclusion to all others.  More importantly, how can you decide 
what the “bare minimum” actually is? You could save all the memory by deciding not 
to implement the program! 

In almost any modern system you will be developing or using several components, 
each with its own memory requirements.  Some will provide more opportunities for 
memory saving than others.  There’s no point in working overtime to save a few 
bytes in one component, when a minor change in another would save many times 
that.  How do you decide which components to concentrate on? 

In many projects there will be several teams each working on different components.  
Each individual team may feel they have less incentive to save memory than other 
teams — everyone likes to believe that the problem they are working on is unique, 
and harder than everyone else’s problem.  It costs teams programmer effort to reduce 
memory use – so they’ll be tempted to let a different team pay the cost, treating 
memory as “someone else’s problem”.  How can you share out the pain of saving 
memory between the teams, so that they can design their software and plan its 
implementation effectively?   

Therefore: Draw up a memory budget, and plan the memory use of each component in the 
system.  
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Define memory consumption targets for the each component as part of the 
specification process.  Ensure that the targets are measurable [Gilb88], so the 
developers will be able to check whether they’re within budget.  

This process is similar to the ‘costings’ process preceding any major building work.  
Surveyors estimate costs and time of each part of the process, to determine the 
feasibility and to negotiate the requirements of the customer.  

Ensure that all the teams ‘buy into’ the budget.  Involve them in the process of 
deciding the figures to budget, estimating the memory requirements and negotiating 
how any deficits are split between the different teams.   Communicate the resulting 
budget to all the team members and invite their comments.  Refer to it while doing 
MEMORY TRACKING during development, and during the MEMORY PERFORMANCE 
ASSESSMENT later in the project.  Make meeting the budget a criterion for release of 
each component.  Celebrate when the targets are met! 

Consequences 
The task of setting and negotiating the limits in the memory budget encourages all the 
teams to THINK SMALL, and sets suitable parameters for the design of each 
component.  The budget forces the team to take an overall view of memory use, 
increasing the architectural consistency of the system.  Furthermore, having specific 
targets for memory use greatly increases the predictability of the memory use of the 
resulting program, and can also reduce the program’s absolute memory requirements. 

Because developers face specific targets, they can make decisions locally where there 
are trade-offs between memory use and other constraints.  It’s also easy to identify 
problem areas, and to see which modules are keeping their requirements reasonable, 
so a budget increases programmer discipline.  

However: defining, negotiating and managing the budgets requires significant programmer 
effort.   

Developers may be tempted to achieve their local budgets in ways that have 
unwanted global side effects such as poor time performance, off-loading 
functionality to other modules or breaking necessary encapsulation (see [Brooks75]).  
Runtime support for testing memory budget requires hardware or operating system 
support. 

Setting fixed memory budgets can make it more difficult to take advantage of more 
memory if it should become available, reducing the scalability of the program. 

Formal memory budgets can be unpopular with both programmers and managers 
because the process adds accountability without direct benefits.  If the final system 
turns out over budget then everyone will loose out; if it turns out under budget then 
the budget will have been ‘wrong’ – so those doing the budget may loose credibility. 

Implementation Notes 
Suiting Budget to the Project 

Producing and tracking an accurate memory budget for a large system is a large 
amount of work, and can impose a substantial overhead on even a small project.  If 
memory constraints aren’t actually a problem, maintaining budgets is rather a waste 
of effort that could be better spent elsewhere.  And in an informal environment, with 
less emphasis on up-front design, developers can be actively hostile to a full-scale 
formal memory budget. 
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For this reason, many practical memory budgets are just back-of-the envelope 
calculations – a few minutes work with the team on the whiteboard, summarised as a 
paragraph in the design documentation.  Only if simple calculations suggest that 
memory will be tight – or tight in certain circumstances – is it worth spending the 
effort to put together a more formal memory budget. 

What to budget? 

There are various kinds of memory use; different environments will have different 
constraints on each.  Here are some possibilities: 

• RAM memory usage – heap memory, stack memory, system overheads. 
• Total memory usage – including memory PAGED OUT to disk. 
• ROM use – for systems with code and data in ROM 
• Secondary storage – disk, flash and similar data storage, network etc. 

In addition, the target environment may add further limitations: a limit on each 
separate process (such as for code using the ‘Small’, 16-bit addressing model on Intel 
architectures), or a limit on stack size (imposed by the operating system). 

It’s worth considering each constraint in turn, if only to rule most of them out as 
problems.  Often only one or two kinds of memory will be limited enough to cause 
you problems, and you can concentrate on those. 

Dealing with Variable Usage 

It’s easier to budget ROM usage than RAM.  ROM allocation is constant, so you can 
budget a single figure for each component.  Adding these figures together will give 
the total ROM use for the system. 

In contrast, the RAM (and secondary storage) requirements of each component will 
normally vary with time – unless a component uses only Fixed Data Structures.   

One approach is to estimate the worst case memory use of each component and 
adding the values together, but the result could well be far too pessimistic; in many 
systems only a few components will be being used heavily at a time.  A workstation, 
for example, will have only a few applications running at any one time – and 
typically only one or two actively in use.   

Yet the memory use of the different components tends not to be independent. For 
example, if you have an application making heavy use of a, then the applications 
peak memory usage is likely to coincide with peak memory use in the network driver.  
How do you deal with this correlation? 

To deal with these dependencies, you can identify a number of worst case scenarios 
for memory use, and construct a budget for the memory use of each component in 
each scenario.  Often, it is enough to estimate an average and a peak memory 
requirement for each component and then estimate which components are likely to 
have peak usage for each worst-case scenario.  You can then sum the likely use for 
each scenario; and negotiate a budget so that this sum is less than the total for every 
one of the scenarios. 

Dealing with Uncertainty: Memory Overdraft  

Software development in the real world is unpredictable.  There’s always a 
possibility for any component that it will turn out to be just too difficult or too 
expensive in time or other trade-offs to reduce its memory requirements to the 
budgeted limits.  If there are many components, there’ll be a good chance that at least 
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one will be over budget, and the second law of thermodynamics [Flanders&Swan] 
says it is unlikely that components will be correspondingly under budget. 

The answer is to ensure that there is some slack in the budget – an overdraft fund.  
The amount depends on how uncertain the initial estimates are.  Typical amounts 
might be between 5% and 20%.   The resulting budget will be more resilient in the 
face of development realities, increasing the overall predictability of the program’s 
memory use. However you must be careful to ensure that programmers don’t reduce 
their discipline and take the overdraft for granted, reducing the integrity of the 
budget.  

The OS/360 project included overdrafts as part of their budgets [Brooks75].    

Dealing with Uncertainty: A Heuristic Approach 

Having a Memory Overdraft to allocate to defaulting components is a good ad-hoc 
approach to dealing with uncertainty, but it’s a bit arbitrary.  If you’re seriously 
strapped for memory, allocating an arbitrary amount to a contingency fund isn’t 
exactly a very scientific approach.  Should you assign 5% or 30%?  If you assign 
30%, you’re wasting a very large amount of memory that you could more 
economically assign to a component.  If you assign less, how much are you 
increasing the risk? 

The solution is to use a technique publicised as part of the  ‘Program Evaluation and 
Review Technique’ (PERT).  This is normally used to add together time estimates for 
project management – see [Filipovitch96], but the underlying statistics work equally 
well for adding together any set of estimated values.    

Make three estimates for each figure rather than just one.  Estimate a reasonable 
worst case value, the most likely (median) value, and a reasonable best achievable 
(i.e. lowest) maximum value.  Try to do your estimation impartially so that it’s 
equally likely that each final figure will turn out higher or lower than the median 
you’ve estimated.  So when you add them together, probably some of the final figures 
will be higher and some of them will be lower.  In effect combining the all the 
uncertain figures means that some of the uncertainty ‘cancels out’. 

The arithmetic of this is as follows.  If the estimated value for component i is ei, and 
the maximum and minimum values are ai and bI, , then the best guess, or ‘weighted 
mean’ value for each is: 

 (ai + 4ei + bi) / 6 

And the best guess of the standard deviation of each is: 

σi = (bi  - ai) / 6 

So the best estimate of the sum is the sum of all the weighted means; and we 
calculate the standard deviation of the sum, SI  using: 

Si  ^ 2 = Sumi(σi ^ 2 ) 

These calculations are very easy to do with a spreadsheet. 

For example, Table 1 shows one possible worst-case scenario for the Ring Clock, a 
kind of watch device worn on the finger than receives radio time checks from 
transmitters in Frankfurt.   This scenario shows it ringing an alarm.  Only the Screen 
Driver and the UI Implementation components are heavily used: 
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RAM Scenario 1: Alarm Sounding(Kb)
Min Est Max W. Mean Variance

(a+4m+b)/6 ((b-a)/6) 2̂
Screen Driver (Worst case) 3 5 7 5.00 0.44
Network Interface 3 5 6 4.83 0.25
UI Implementation (Worst case) 10 12 20 13.00 2.78
Low level network drivers 3 3 3 3.00 0.00
Program Stack 4 4 8 4.67 0.44
O/S 5 5 5 5.00 0.00
Effective Total: 35.5 3.92  

Table 1 : Calculation of the Combination of Several Estimates 

A good estimate of the maximum and minimum values for the sum is three standard 
deviations (the so-called ‘95% confidence limits’) above and below the mean.  The 
table above shows the standard deviation to be roughly 2Kb, which gives the 
following values for the combined estimates: 

Maximum:   41K 
Estimate: 35K 
Minimum: 29K 

So we can be reasonably confident that we shall be able to support this particular 
worst-case scenario with 41K of memory – much less than the sum of the all the 
maximum estimates.   

If the actual memory available is less, then we might need to work on the most 
variable estimates (UI Implementation) to produce a more accurate estimate – since 
the large maximum has contributed much of the uncertainty in the figure.  
Alternatively we might need to do some FEATURECTOMY to reduce the estimated 
memory requirements of that or other components. 

Enforcing the Budget in Software 

Some environments provide memory use monitors or resource limits, which you can 
use to enforce memory budgets. For example IBM UNIX allows you to define a limit 
on the heap memory of a process, and EPOC’s C++ environment can enforce a 
maximum limit on application heap sizes.  The MEMORY LIMIT pattern describes how 
you can implement these limits yourself. 

You can use these monitors to enforce the limits on the maximum memory use of 
each component.  Some projects may use these limits for testing only; in other cases 
they may remain in the runtime system, so that processes or applications will fail 
(PARTIAL FAILURE, or complete failure) rather than exceed their budget. 

Of course software limits enforce only the maximum use for each component.   
Typical worst case scenarios will have only a few components using their maximum 
memory requirements, so such software limits don’t provide a full check that the 
components are conforming to the budgets. 

Example 
The Palm Pilot has an interesting budget for its dynamic heap (used for all non-
persistent data).  Because only one application runs at a time (PROGRAM CHAINING), 
the budget is the same for every application that can run on a given machine. 
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The following is the Pilot’s budget for PalmOs 3.0, for any unit with more than 1 
Mbyte of memory [PalmBudget].  Machines with less memory are even more 
constrained. 

24k  System globals (screen buffer, UI 
globals, database references, etc.)  

32k  TCP/IP stack, when active 

Variable amount IrDA stack, "Find" window, other 
system services  

4k (by default)  Application stack (the application 
can override this amount)  

up to 36k  Available for application globals, 
static data, dynamic allocations, etc. 

Table 2: Palm Pilot 3.0 Memory Budget 

Known Uses 
[Brooks75] discusses the memory budget for the OS/360 project.  In that project, the 
managers found it important to budget for the total size of each module (to prevent 
paging), and to specify the functionality required of each module as a part of the 
budgeting process (to prevent programmers from offloading functionality onto other 
components). 

A current mobile phone project has two particular architectural challenges provided 
by a hardware architecture originally defined for a very different software 
environment. First, ROM (flash RAM) is very limited.  Based on a Memory Budget, 
the team devised compression and sharing techniques, and negotiated Featurectomy 
with their clients.  

Secondly, though RAM in this phone is relatively abundant, restrictions in the 
memory management architecture means that each process must have a pre-allocated 
heap, so every process uses the RAM allocated to it at all times.  Thus the team could 
express the RAM budget in terms of a single figure for each process – the maximum, 
or worst case, figure.  

The Palm documentation specifies a standard memory budget for all Pilot 
applications.  Since only one application runs at a time, this is straightforward.  

See Also 
There are three complementary approaches to developing a project with restricted 
memory.  The MEMORY BUDGET pattern describes how to tackle the problem up front, 
by predicting limits for memory, and then implementing the software to keep within 
these limits.  The MEMORY TRACKING pattern gathers memory use statistics from 
developers as the program is being built, encouraging the developers to limit the 
contribution of each component.  Finally, if memory problems are evident in the 
resulting program, a MEMORY PERFORMANCE ASSESSMENT the developers uses post-
hoc analysis to identify memory use hot spots and remove them.  

For some kinds of programs you cannot produce a complete budget in advance, so 
you may need to allocate memory coarsely between the user and the system, and then 
MAKE THE USER WORRY about memory. 

Components that use FIXED SIZE MEMORY are much easier to budget than those using 
VARIABLE SIZE MEMORY.  
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Systems that satisfy their RAM or secondary storage memory budget when they’re 
started may still gradually ‘leak’ memory over time, so you’ll need to Plug the Leaks 
as well. 

 [Gilb88] describes techniques for ‘attribute specification’ appropriate for defining 
the project’s targets. 
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Featurectomy Pattern 
Also known as: Negotiating Functionality 

How do you ensure you have realistic requirements for a constrained system? 

• Software is ‘soft’, so the costs of extra functionality are hidden from those 
who request it. 

• Extra functionality costs code and often extra RAM memory 

• Specification teams and clients have a vested interest in maximising the 
functionality received. 

• Some functionality confers no benefit to the users. 

Software is soft; it's infinitely malleably.  Given sufficient time and effort you can 
make it do virtually anything.  But it costs time, effort and memory to achieve this.   

Non-programmers are often unaware of this cost (programmers too!). And even if 
they are aware, or are made aware, many have no means of knowing exactly what the 
costs are.  Will it take more memory to speed up the network performance by 50% 
than to add a new handwriting input mechanism?  It’s difficult for a non-programmer 
to know. 

And in most environments the development team - and particularly the specification 
team if there is one - is under very great pressure to add as much functionality as 
possible.  Functionality, and elegant presentation of functionality, is the main thing 
that sells systems.  From the point of view of the client or specification team the 
trade-off is simple: if they ask too little functionality they may be blamed for it; if 
they ask for too much, the development team will take the blame if they don't deliver 
it.  So the pressure is on them to over-specify. 

Yet it's rare that all the possible functionality specified is essential, or even 
beneficial.  For example some MS Windows applications contain complicated gang 
screens; MS Word 6 even includes an entire undocumented adventure game, hidden 
from all but initiates.  Many delivered systems retain some of their debugging code, 
or checks for errant – and impossible – behaviour.  Such additional code costs both 
code and often RAM memory in the final system.  Yet they provide no service at all 
to the user. 

Therefore: Negotiate a specification to satisfy users within the memory constraints 

Analyse the functionality required of the system both in terms of its priority (how 
important is it?) and in terms of its memory cost (how much memory will it use?).  
Based on that, negotiate with your clients to remove – or reduce or modify – the less 
important and more memory intensive features. 

Ensure that you remove any additional code for testing and debugging when you 
make a final release of the software. 

Consequences 
The released software needs to do less, so uses less ROM and RAM memory.   In 
systems that implement Paging, the smaller code and memory sizes make for less 
disk swapping, improving the system’s time performance. 

There is less functionality to develop and to test, giving reduced development and 
testing.  Because there is less functionality, there can be less interaction between 
features, leading to a more reliable, and often more usable, system. 
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However: The system has less functionality, potentially reducing its usability. 

Unless the negotiation is handled carefully, the development team can be seen as 
obstructive to the client’s goals, reducing client goodwill. 

Implementation Notes 
It can be difficult to impress on even technically-minded clients that memory limits 
are a significant issue for a project.  Most people are familiar with the functionality 
of a standard MS-Windows PC, and find it difficult to appreciate the impact of much 
lower specification systems. 

A good way to approach the negotiations is to prepare a Memory Budget allocating 
memory costs to each item of functionality – see Functionality a la Carte [Adams95].  
Although this can of course be difficult to do, it makes negotiation straightforward.   

Given this shopping list, and the fixed total budget, then the specification team and 
customers can make their own decisions about what functionality to include.  Often 
they will have a much better idea of the importance of each feature, so they can make 
the trade-offs between options. 

The Next Release 

Frequently people (clients or developers) become ‘wedded’ to features, perhaps 
because it was their idea, or because somebody powerful wants it.  In that case it 
becomes very difficult to negotiate such features out of a product no matter how 
sensible it may appear to everyone else concerned. 

In that case a common approach is to agree to defer the feature until the next system 
release.  By then it may well be obvious whether the feature is necessary, but also it 
will allow a more impartial appraisal once time has gone by. 

Supporting Variant Systems 

Features that are essential to one set of users may be irrelevant to others.  In many 
cases there won’t be any single user who needs all the system functionality.    

So you can provide optional features in separate PACKAGES, which can be left 
uninstalled or merely not loaded at run-time.  In systems that don’t support packages, 
you might use conditional compilation or source code control branches to tailor 
different systems to the needs of different sets of users.   

Sometimes this results in two-tier marketing of the system: a base-level product with 
low memory demands, and a high-tier (‘professional’) product with higher hardware 
requirements. 

Thin Client 

One particularly powerful form of FEATURECTOMY is possible when there is some 
form of distribution with a central server and one or more client systems.  In such 
‘client-server’ systems the trend until recently has been to have much of the business 
processing at the clients (‘fat clients’), talking to a distributed database. This 
approach obviously requires a lot of code and data in the client.  And it may well be 
unsuitable if the client has little memory or processing power. 

Instead, given such a system, it is often possible to offload much of the processing to 
the server.  You can do this by making the client simply be a graphics workstation 
(provide an character or X-windows terminal emulation).  But often a better approach 
is to implement a ‘thin client’, which provides a UI and does simple user input 
validation, but which passes all the business-specific processing to a central server. 
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Figure 2: Three kinds of client-server 

Other Featurectomy options: 

Often there are specification alternatives to simply cutting out a feature altogether.  
For example you might agree LOWER QUALITY MULTIMEDIA for the implementation, 
or use FIXED USER MEMORY in the interface, to reduce the memory demands.  You 
might MAKE THE USER WORRY – for example by making the user to explicitly start 
any functionality required, rather than starting it automatically. 

You may be able to cut down on the additional data demands of the system.  For 
example a mapping application might store only a subset at any time of all the maps 
required; a dictionary application might support only one language or technical 
subset at a time; an operating system might cut down on the number of simultaneous 
services available. 

Debugging Code 

One key set of users whose needs are different from others is the programmers 
themselves testing and debugging the system.   Examples of such code are: 

• Tracing code, to show what the program is doing. 

• Checking code, to verify that the program is working correctly.    Examples 
are assertions and invariants [Meyer] 

• Debugging test harnesses, such as ‘main()’ functions added to classes for 
localised testing. 

• Debugging support functions, such as functions to allow test code to access 
‘private’ data for ‘white box testing’ [test]  

• Instrumentation macros for memory and performance optimisation (see the 
Plugging the Leaks Pattern). 

Clearly none of this code is vital to the delivered system.  It will waste code space, 
and potentially impact the time performance of the system.  So you’ll want to remove 
it from the deliverable product. Ideally, though, you’ll want to keep it in your 
codebase, so that it’s available for future testing, debugging and optimisation. 

The Eiffel language [Eiffel] is designed specifically to support this kind of dual 
mode.  In debugging, it encourages programmers to define additional checking code: 
preconditions and postconditions for each function, and invariants for each class.  In 
release mode the compiler doesn’t generate this checking code at all. 
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Conditional Compilation in C++ 

In C++ the usual technique is to use pre-processor flags and macros.  For example 
#ifdef DO_TRACE 
#   define TRACE( x ) printf( x ) 
#else 
#   define TRACE( x ) 
#endif 

allows us to use the TRACE throughout the code.  When debugging, we can declare 
the DO_TRACE macro (in a global header file, or on the compiler command line); in 
the final system we can omit it. 

An even more common form of this in C++ is the assert macro, built into the C++ 
environment (header file assert.h): 

#ifdef NDEBUG 
#   define assert(exp) ((void)0) 
#else 
#   define assert(exp) (void)( (exp) || (_assert(#exp, __FILE__, __LINE__), 
0) ) 
#endif /* NDEBUG */ 

The _assert() function here displays a text message with the text of the assertion, and 
the location (sometimes in a dialog box).  Then you can use expressions like: 

assert( x== 0 ); 

and in debug mode the assertion is tested; in release mode the line of code is 
FEATURECTED. 

Conditional Compilation in Java 

Conditional compilation in Java uses a compiler optimisation.  Most Java compilers 
can detect when certain code is ‘dead’ and will not produce corresponding byte 
codes.  So a test using a static final boolean provides conditional compilation: 

class Assertions  { 
    public static final boolean isEnabled = true; 

       // Change to false for release 

 
    public static void assert( boolean assertion, String message ) { 
        if (!assertion) 
            throw new Error( "Assertion failed: " + message ); 
    } 
} 

You might use this as follows: 
    public static void main( String[] args ) { 
        try { 
            int x=0; 
            if (Assertions.isEnabled) 
                Assertions.assert( x == 1, "x is non-zero" ); 
            Assertions.assert( x==1, "second one" ); 
        } catch (Throwable e) { 
            e.printStackTrace(); 
        } 
    } 

Examples 
[Matrix for Strap-it-on showing features, estimated peak and average ROM and ROM 
use to support each, and development time in man-days].  Based on this we decided 
to exorcise feature X. 

Known Uses 
In a recent Symbian EPOC mobile phone development, the initial ROM demands 
were way over budget.  The development team used a ROM BUDGET and MEMORY 
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TRACKING to analyse the problem, and negotiated FEATURECTOMY with the client’s 
specification team.  In particular they agreed to have different language variants of 
the system for different markets, thereby considerably cutting down total size of 
RESOURCE FILES. 

Microsoft Windows CE provides pocket versions of MS Word, MS Excel and other 
applications.  In each application, the CE developers have cut down considerably on 
the functionality.  For example Pocket Word 2.0 omits, amongst many other things, 
the following features of MS Word 97: 

• Thesaurus 
• Mail-Merge 
• Auto Format 
• Clip-art  
• Support for non-TrueType fonts 
• Float-over-text pictures 

Pocket Word also uses a different internal file format from any MS Windows version 
of Word, MAKING THE USER WORRY about file conversion. 

See Also 
Usually you will need a MEMORY BUDGET as a basis for Featurectomy negotiations. 

MEMORY TRACKING allows you to see the effects on memory use as features are 
implemented.  Featurectomy may be appropriate if things look bad. 

Some forms of UI PATTERNS may provide Featurectomy without significantly 
affecting the usability of the system.  For example FIXED USER MEMORY provides 
feature with a fixed maximum memory use.  And USER MEMORY CONFIGURATION 
allows the user to chose which features are present at run-time. 

Alternatives to Featurectomy include COMPRESSION, using SECONDARY STORAGE, 
PACKED DATA and SHARING – and indeed most of the other patterns in this book. 
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Memory Tracking Pattern 
A.k.a. Memory Accountant, Continuous Programmer Feedback 

How do you find out if the implementation you’re working on will satisfy your memory 
requirements? 

• You’re doing a project that may fail if the memory requirements exceed 
certain limits. 

• The development team needs continued motivation to restrict memory use. 

• Many teams are hostile to the formality of a full Memory Budget. 

• If things are going well there’s no point in going to unnecessary effort. 

You are working on a software development project for a system with limited 
memory.  Bad things will happen if the final system exceeds its memory constraints.  

Yet the programming team – including yourself – may find it difficult to judge how 
important the problem is.  People who’ve only worked in relatively unconstrained 
environments often have difficulty coming to terms with tight memory limits and the 
different programming styles these imply.  Alternatively, they may overestimate the 
danger, and waste effort on unnecessary memory optimisation.   

If you’re working in a relatively informal environment, you may find that a detailed 
Memory Budget – with its culture of advanced planning and estimation – may not be 
welcome to your co-developers. They may resist the process, or simply ignore the 
results.  Yet you still need to bring home the need to Think Small and to design the 
system to satisfy the memory constraints. Even if the team are willing participants in 
a budgeting process, that can involve lots of effort and overhead to construct and 
maintain budgets —more so if you are in a formal environment with lots of 
paperwork. 

Alternatively, if you wait until almost the final system release and do a Memory 
Performance Assessment, then there’s a possibility your designs and implementation 
may be too inflexible to allow much improvement at the last moment.  What should 
you do? 

Therefore: Track the memory use of each release of the system, and ensure that every 
developer is aware of the current score.  

With each significant release of the system, use tools to examine the memory use of 
the entire system and – as far as possible – of each component within it.   Publish this 
knowledge to all of the team.   

Use graphs to show how the memory use varies between releases – ensure that 
everyone understands that a downward pointing graph is desirable, and label any 
major changes in the memory use of a component with a brief explanation. 

If necessary, track the various worst-case scenarios (see Memory Budget), and track 
separately the figures for each one.  If you have a Memory Budget, then compare the 
current figures with the targets in the budget.  Consider creating a memory 
accountant role to perform this memory tracking. There are advantages if this role is 
not filled by the main project manager or technical lead — partly to lower their 
workload, but also to reduce the impression of management checking up on 
programmers. 



Thinking Small – The Processes for Creating Small Memory Software Weir, Noble 

 

 © 2004 Charles Weir, James Noble  Page 20 

Consequences 
The feedback of their current memory status encourages every programmer to THINK 
SMALL, without a need to impose the formal limits of a MEMORY BUDGET. Doing just 
MEMORY TRACKING can also take less programmer effort on an ongoing basis than 
full budgeting, since programmers will deduce the need to save memory for 
themselves.  So this pattern can be very effective in less formal development 
environments, creating self-imposed programmer discipline, which will help reduce 
the absolute memory requirements of the system. 

Having figures for memory use increases the predictability of the memory use of the 
resulting system.   It highlights potential local problem areas early, so you can 
address them or schedule time for a Memory Performance Assessment.  

If you can produce figures for the separate system components, then you can 
establish the actual contribution of each component, showing the local contribution 
of each to the global memory use. 

However: Tracking memory use and producing the feedback needs programmer effort.  
Measuring the memory use may require hardware or operating system support, or 
mean further programmer effort to instrument the code accordingly, especially to 
measure RAM allocation and use. 

There’s a danger that early figures, when the functionality is incomplete, may be 
misleadingly low.  Or that you may have chosen an unrepresentative set of worst-case 
scenarios.  Either of these factors can cause the figures to be over-optimistic, lulling 
the team into a false sense of security and discouraging future programmer 
discipline.  

Implementation Notes 
How do you do the measurements?  This section examines tools and techniques to 
find out the memory use of the various components in a system. 

As discussed in the Memory Budget pattern, there are several types of memory use 
you may want to track including: Total RAM memory, ‘Live’ RAM usage, ROM use 
and Secondary storage. 

External Tools 

It’s usually straightforward to measure ROM use – just examine the sizes of the files 
that make it up, and the size of each ROM image itself.  However how are you to 
measure the memory use that varies with time? 

Similarly in most environments you can measure the secondary storage used by the 
application at a given time using the file system utilities.    

Many environments also provide utilities to track the RAM use of each process.  For 
example, Microsoft Developer Studio’s Spy++, [MicrosoftSpy97], allows you to 
examine the memory use of any process under Windows NT.  Figure 3 shows an 
example display.   The important figures are “Private bytes”, which gives the current 
heap memory use for the process, and ‘peak working set’ (see the Paging pattern) 
which gives the minimum RAM that might be needed.  
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Figure 3: Microsoft Spy++ Display for a Process 

Unix systems similarly provide tools such as ps and top to list processes’ memory 
use. 

The EPOC operating system supports rather more memory-constrained systems, so 
provides a rather more detailed display of memory use using its ‘Spy’ tool: 

 

Figure 4: EPOC Spy Display 

The EPOC Spy Display in Figure 4 shows for each thread, the total heap size (HS), 
the RAM allocated within each heap (HU), the Stack size (SS), and – where the 
process protection permits – the maximum stack usage (SU). 

Code Instrumentation for RAM use. 

System tools can normally only show you an external view of each separate process, 
showing its total memory use.  Perhaps your important components are more fine-
grained than individual processes, or perhaps there are no system tools available for 
your particular environment.  What should you do then? 

The solution is to ‘instrument’ your own code, adding test code to track memory 
allocations and de-allocation.  See the Memory Limit pattern for details.  

Another possibility, if your environment supports it, is to use separate Heap 
structures for each component, and use the system tools to examine the memory use 
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of each heap.  This is possible using EPOC’s SPY tool – for example Figure 5 shows 
three heaps owned by the Font Bitmap Server process (FONTBITMAPSERVEER:$STK, 
FBSSHAREDCHUNK and FBSLARGECHUNK) 

 

Figure 5: EPOC Spy: Heap Display 

Code Instrumentation to find Maximum Stack use 

There are at least two approaches to estimating the maximum stack use of a thread.   

You can use compiler tools instrument each function call explicitly.  For example in 
debug mode Microsoft Visual C++ inserts calls to a function _chkstk() at the start of 
each function.  If you can replace the (undocumented) implementation of this 
function, then it’s straightforward to find out the current stack use.  Many other 
compilers support similar features. 

A less intrusive approach is to ensure the unused portion of the stack is filled with a 
random value, possibly zero.  At the end of the process – or at any other time – you 
can track to see how much of this memory has been overwritten.  EPOC, for 
example, initialises all stacks to an arbitrary 29 hex, and EPOC Spy uses this when it 
examines the stack of each readable process to discover its used stack (SU in Figure 
4). 

Case Study 
[Example of the same system as Memory Budget, showing graphs of actual measured 
memory use plus target for three releases, for several components, both worst case 
and normal.  How do we combine the graphs? this sounds great!] 

Known Uses 
The EPOC operating system aims to support systems with constrained hardware.  In 
particular, some of the target platforms have hard limits on their ROM memory for 
storing code.  To explore this problem, the design team recently produced a Memory 
Tracking document, identifying all the components and showing their ROM use over 
successive releases of the operating system.  The document discusses the reasons for 
each component size change – typically, of course, increases in functionality. It 
provides an excellent basis for a Memory Budget for any future system, both by 
suggesting the memory use of combinations of components, and by suggesting the 
possible gains from featurectomies in specific components. 

 

Brooks? 
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Roxette project, of ROM. 

See Also 
Memory Budget can provide a set of targets for developers to compare with the 
tracked values. Memory Performance Assessment uses similar techniques to 
determine the memory use at a particular point, as a basis for memory optimisation. 

The Memory Limit pattern describes techniques to track memory allocation within 
your programs at runtime. 

Extreme Programming (XP) advocates continual tracking of all aspects of a 
development project, and stresses the advantages of the auditor role not being part of 
the project’s power structure [Beck, 1999].   
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Memory Optimisation Pattern 
A.k.a. Memory Performance Assessment. 

How do you stop memory constraints dominating the design process to the detriment 
of other requirements? 

• You’re developing a system that may turn out to be memory-constrained, or 
you’re porting an existing system to a more constrained environment. 

• You don’t want to devote too much effort to reducing memory requirements 
early in the project – it may prove unnecessary. 

• Often other constraints may be more important than memory constraints 

• When the system is near to release, memory performance does turn out to be a 
problem. 

Your system has to meet particular memory requirements, but other requirements are 
more important.  A full-scale Memory Budget or Memory Tracking would cost 
programmer discipline and programmer effort that could be better directed towards 
other requirements.   

For example, if you’re developing a new operating system release for desktop PCs, 
then integrating a web browser into the desktop, providing AI-based help systems and 
shipping the system less than a year late, will all be more important than controlling 
the amount of memory the system occupies. 

Yet there’s a reasonable likelihood that the system’s memory constraints may prove a 
problem.  How do you allow for this possibility in the development? 

Therefore:  Implement the system normally, then optimise memory use afterwards. 

Implement the system, paying attention to memory requirements only where these 
have a significant effect on the design.  Once the system is working, identify the most 
wasteful areas and optimise their memory use. 

Using this approach development proceeds much as usual, with not much special 
attention paid to memory use.  You’ll usually do a quick informal MEMORY BUDGET 
very early on, just to make sure there are no really pressing concerns.  And where the 
implementation and design costs are reasonably low, you’ll use patterns to reduce the 
memory use – but only where these don’t conflict with more vital design constraints.  

If the resulting system meets its memory requirements, then that’s as far as you need 
take matters.  But if, as often happens, the program does not meet its memory 
requirements you to do a Memory Performance Assessment.  

By an examining the code, using profiling tools, and any other appropriate 
techniques, find out where the system is using most memory.  Identify the most 
promising areas to improve memory use, and implement changes accordingly.  
Repeat this process until the system satisfies its memory constraints. 

Consequences 
The team develops the system effectively and faster, because they are not making 
unnecessary optimisations — a given amount of programmer effort gets you more 
software with better time performance and higher design quality.  
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Initial development can be less constrained, improving programmer motivation.  In 
addition the performance assessment is a single, short-term task, for the team to 
achieve – also improving programmer motivation. 

However:  The memory requirements of the resulting program will be hard to predict. In 
many cases it requires more programmer effort to leave memory optimisation to last 
than performance optimisation would, because memory optimisation tends to require 
changes to object relationships that can affect large amounts of code.  

Memory optimisation after implementation is more likely to compromise the design, 
leading to poorer design quality than in systems designed from the start to support 
memory restrictions.   Local optimisations may also compromise the global integrity 
and overall architecture of the system. 

Finally the optimised system will need testing, increasing the total testing cost. 

Implementation Notes 
Static much easier than dynamic 

Static Analysis  

Code analysis.  What structures are there?  How much memory will each use? 

Code and static data size – look for redundant code (execution trace tools; human 
examination; linker map tables). 

Look particularly for any object that will have very large numbers of instances. 

Memory Profiling Techniques 

Memory Tracking discussed techniques to find the total memory used by each 
component.   How do you examine each component to find out whether and how it’s 
wasting memory? 

Tracing as objects are created and destroyed.  CodeXXXX shows objects being 
created and destroyed. 

Heapwalk tools (Windows, EPOC) show the objects. 

Optimisation Approach 

Low hanging fruit. 

you should only optimise as and when needed, never in advance. you should define 
measurable performace criteria, optimise until you meet them, and then stop --- 
backing out other optimisations if they don't contribute much to the final result. 

 * you should be able to undo optimisations, and should undo them when they are no 
longer needed. 

 * cite the Lazy Optimisation pattern (plopd2 or 3, it's in the almanac) LOTS. if you 
have time, its worth a read to get their  mindset, which seems right on the button. 

Optimisation Patterns 

Groups of objects – all.  

Local changes:  Packed data, Memory Pooling, Multiple Representations. 

Compression:  String Compression, File Compression, (Tokens) 

Secondary Storage:  Packages, Data Chaining (local temp file) 
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What is and is not safe to leave until Memory Optimisation 

Leave only local optimisations. 

Small Interfaces don’t leave.  Partial Failure. Fixed DS.  

UI Don’t leave (except  Notifier) 

The deal here is interfaces vs. implementation.  You can optimise implementations 
locally. You have to optimise interfaces globally, which often translates to --- you 
can't optimise them.  also, the flip side of this is, what optimisation techniques are  
(and are not) safe to do?  I.e. you don't want to break modularity when you optimise a 
local implementations, or else you can't undo them. 

Example 
 [Regclean] provides an example of an assessment of the redundant memory use in an 
non-optimised workstation product.  Quote it? 

Known Uses 
This pattern occurs very frequently in projects, since it is what happens by default.  
Typically a team implements a system, then discovers it uses too much memory.  
Memory optimisation follows.   Another common situation is in porting an existing 
system to an environment with insufficient memory to support the system unchanged.  
A memory performance assessment must be part of the porting process. 

For example in the development of the Rolfe&Nolan ‘Lighthouse’ system to capture 
financial deals, the team developed the terminal software and got it running reliably.  
However they then discovered that some users required to keep information about 
huge numbers of deals in memory at one time – and the cost of paging the memory 
required made the performance unacceptable.  The team did an informal memory 
assessment, and optimisation.  They found they had lots of small, heap-allocated 
objects.  So they purchased an improved heap management library with a much 
smaller overhead both for each allocated block and for fragmentation.  They 
identified that they didn’t need the full information for each deal, so they used 
Multiple Representations to reduce the memory each deal takes by default.   

 [Blank+95] describes the process of taking an existing program and optimising it to 
run under more constrained memory conditions. 

See also 
The patterns Lazy Optimisation and Optimise the Right Place in [Auer+95] address 
speed optimisation, but the techniques apply equally to space optimisation.  Two 
relevant low-level patterns in the same language are Transient Reduction and Object 
Transformation. 

If you are facing particularly tight memory requirements, prefer to think ahead, or are 
a pessimist, then you should prepare a Memory Budget in advance so you can plan 
your use of memory.  If the system is going to undergo continual change, then you 
should do Memory Tracking to ensure that members of the programming team are 
continually aware of the memory requirements. 
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Plugging the Leaks Pattern 
Also known as: Alloc heaven testing. 

How do you ensure your program recycles memory efficiently?  

• Programmers aren’t perfect.   

• Heap-based systems can make it easy to have memory leaks 

• Systems will run happily and satisfy users even with memory leaks 

• But leaks will still progressively drain free memory from the system. 

Programmers aren’t perfect.  It’s easy to make mistakes [whyMistakes], and if there’s 
nothing that points out the mistake, very difficult to spot and correct them.  An 
important type of such ‘stealth errors’ in O-O systems is called a ‘memory leak’: a 
heap-based object or data structure that’s neither still required by the program, nor 
returned to the heap. 

In C++ and languages without garbage collection this situation is very easy to 
achieve; allocated blocks only return to the heap if you use the memory freeing 
mechanism (delete in C++).  If the program discard all pointers to a heap object, the 
object becomes ‘lost’ – the program will never be able to delete it and return it to the 
heap.  In the phrase used by EPOC developers, the object goes to ‘Alloc Heaven’. 

[Picture showing continuous heap, with pointers from ‘program’ and internal, and an 
orphan block] 

Even Java and languages with garbage collection can have memory leaks.  The 
Garbage Collector will automatically clean up objects discarded to Alloc Heaven as 
above; however it’s quite common to have collections still containing pointers to 
objects that are no longer actually required.  GC can’t delete these objects, so they 
remain – they are memory leaks. 

Now programs will run happily and satisfy users even with memory leaks.  Most 
Microsoft software, for example, appears to have minor memory leaks under some 
circumstances.   But leaks use up valuable memory that may be needed elsewhere; 
leaks that are significant over the time of a given process will impact performance 
and push the system over it’s Memory Budget. 

Therefore: Test your system for memory leakage and fix the leaks. 

During program testing, use tools and libraries to ensure that you detect when objects 
left on the heap that are no longer required.  Track these ‘leaks’ down to their source 
and fix them. 

Also test to ensure that your secondary storage doesn’t progressively increase – 
unless this is a necessary feature of the system – and fix the problem if it does. 

Consequences 
The application uses less memory.  That makes it less prone to memory exhaustion, 
so it is more reliable and more predictable.  More memory is available for other parts 
of the system.  Applications running in Paged systems will have better time 
performance. 

Fixing memory leaks often solves other problems.  For example a ‘leaked’ object 
may own other non-memory resources such as a file handle, or do processing when 
it’s cleaned up.  Fixing the leak will also solve these problems. 
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However fixing the leaks requires programmer effort. 

The task of fixing the leaks provides no obvious benefit to customers of the system 
(since all the benefits are indirect) who may resent the time ‘wasted’. 

Implementation Notes 
Determining whether there are Memory Leaks 

The most common way to find out if there are memory leaks is to do stress testing 
[BeizerXXX], and use Memory Tracking tools to see if the heap memory use 
gradually increases.   However, unless the stress testing is very rigorous, this won’t 
find memory leaks caused by very exceptional situations (such as memory 
exhaustion). 

Note, however, that in some environments (C++) heap fragmentation will also cause 
the heap memory use to increase.  If memory use is increasing, but the techniques we 
describe below don’t find any ‘leaked’ objects, then the problem may well be 
fragmentation; you can reduce it using Memory Compaction or Fixed Data 
Structures. 

Causes of C++ Memory Leaks 

The most common cause of C++ memory leaks is ‘alloc heaven’: the program 
discards all references to an object or block of memory without explicitly invoking 
the destructor. 

The best way to fix such leaks is to identify the objects involved, and to insert the 
appropriate code in the correct place to delete the object.  This correct place is often 
defined in terms of ‘ownership’ of the object [Ownership]. 

If there are many small memory leaks, you may well choose to abandon trying to fix 
them all piecemeal and use Memory Discard (using a scratch heap and throwing the 
entire heap away) instead.  

Causes of Java Memory Leaks 

The normal cause of memory leaks in Java is the program retaining spurious 
references to objects that are in fact no longer required.  Ed Lycklama [Lycklama99] 
calls such objects  ‘Loiterers’, and identifies and names the four most common 
reasons: 

• Lapsed Listener – object added to collection, never removed. 

• Lingerer – reference used transiently by long term object. 

• Laggard – object changes state; references refer to previous state objects. 

• Limbo – stack reference in a long running thread. 

The normal way to fix the last three of these is either to rearrange the code so that the 
situation doesn’t happen, or simply to set the offending reference to null at the 
appropriate point in the code. 

Finding Memory Leaks using Checkpointing 

The most common way of tracking down memory leaks is to use a memory 
checkpointing technique.  This technique relies on you being able to define two 
‘checkpoints’ in the code, such that all memory allocated after the first checkpoint 
should be freed before the second checkpoint.  You then insert ‘probes’ (usually 
function calls or macros) at both checkpoints to verify that this is so. 
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There are two possible techniques to implement checkpointing.  The most common 
approach is for the heap implementation to support it directly (usually only in 
debugging mode).  Then the first probe stores the state of the heap at that point – 
typically creating an array of references to all the allocated blocks.  And the second 
probe verifies that the state is unchanged – typically by checking that the set of 
allocated blocks is the same as before.  Of course in garbage collecting languages like 
Java, both checkpoint functions must invoke a garbage collection before doing their 
heap check. 

The alternative approach, if the heap implementation doesn’t support checkpointing 
directly, is to keep a separate collection of pointers, and ensure that every new object 
created is added to this collection, and every object deleted is removed from it.  Then 
the first checkpoint function creates this collection, and the second tests if it’s empty.  

The problem with this is how to intercept every allocation and deletion.  In C++ you 
can implement this by implementing debugging versions of the new and delete 
operators.  In Java you can use a weak reference collection, and replace the 
constructor for Object to add each object to this collection. 

The simplest and most common checkpoints to chose are the start and end of the 
application or process.  Many environments do this by default in debug mode; EPOC 
applications compiled in debug mode will display a fatal error (‘Panic’) dialog box 
with the memory address of objects not deallocated; Microsoft’s MFC environment 
displays information about all remaining allocated objects to the debugging window. 

Tracing the Causes of Memory Leaks in C++ 

The checkpointing technique above will give you the memory references of the 
leaked objects, but it doesn’t tell you why the memory leak occurred.  To find out 
more, you need to track down more information about the objects. 

In C++, a good debugger can usually track down the class of an object with a vtbl if 
you know the likely base class.  For example, in EPOC most heap objects derive from 
the class CBase; if the leaked object has address 0xABABABAB, then displaying 
(CBase*)0XABABABAB will usually show you the class of the allocated object.  In 
MFC, many objects derive from CObject, so you can use the same technique.   

More helpful, and still simple, MFC defines a macro: 
#define DEBUG_NEW  new( __FILE__, __LINE__ ) 

The pre-processor expands __FILE__ and __LINE__ macros to the file name and line 
number being compiled, and the corresponding debug versions of the new operators 
– new( size_t, char*, int) store this string and integer with each memory 
allocation.  So if you put the following in a header file: 

#define new DEBUG_NEW 

Then the tracing information in the checkpointing heap dump can include all the 
memory items allocated. 

Best of all, if possible, is to use a specialised memory tracking tool, such as Purify 
[Rational] or BoundsChecker [NuMega].  These tools implement their own versions 
of the C++ heap libraries, and use debugging techniques to track memory allocation 
and deletion – as well as tracking invalid references to memory.  They also provide 
programmer-friendly displays to help you track down specific memory leaks. 

Tracing the Cause of Memory Leaks in Java 

Having located a leaked object in Java, you need to track back to see what objects, 
static collections, or stack frames still have references to it. 
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The best way to do this is to use one of the several excellent Java memory checking 
tools: JProbe from KL Group [jprobe], [Apicella99].   OptimizeIt from Intuitive 
Systems [optimizeit], or Heap Analysis Tool from Sun [hat].  No doubt others will be 
available shortly. 

Both JProbe and OptimizeIt work by modifying the Java kernel to provide better 
debug heap management, and provide very user-friendly GUIs to help debugging – 
see Figure 6, for example; HAT uses a detailed knowledge of Sun’s own heap 
implementation. 

 

Figure 6: Tracking references to a Java object using OptimizeIt 

Examples 
EPOC Exhaustion Test Extension 

In most C++ applications, the most likely cause of a memory leak is an exception that 
destroys stack pointers to heap memory.  As discussed in the Exhaustion Test pattern, 
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such memory leaks are difficult to simulate by normal testing but easy with 
Exhaustion Testing.   

This example extends the example code we quoted in the Exhaustion Test pattern to 
check for memory leaks during each test.  It uses the EPOC pair of macros 
__UHEAP_MARK and __UHEAP_MARKEND.  In debug mode, these check that the number 
of cells allocated at MARKEND is the same as at the corresponding MARK, and display a 
message to the debug output if not.  The pairs of macros can be nested.  
__UHEAP_MARKEND also checks the heap for consistency. 

static void MemTest(void (*aF)()) 
 { 
 __UHEAP_MARK; 
 for (int iteration=0; ;++iteration) 
  { 
  __UHEAP_FAILNEXT( iteration ); 
  __UHEAP_MARK; 
  TRAPD(error,(*aF)());  // Equivalent to try...catch... 
  __UHEAP_MARKEND; 
  if (error==KErrNone)   // Completed without error? 
   { 
   test.Printf(_L("\r\n")); 
   break; 
   } 
  else 
   { 
   test.Printf(_L("  --  Failed on %d\r\n"),iteration); 
   } 
  } 
 __UHEAP_MARKEND; 
 __UHEAP_RESET; 
 } 

MFC Example 

The following pieces of code implement checkpointing using the Microsoft MFC 
class, CMemoryState.  The first checkpoint (corresponding to EPOC’s __UHEAP_MARK 
above) stores the current state: 

#ifndef NDEBUG 
CMemoryState oldState; 
oldState.Checkpoint();  
#endif  

The second checkpoint (corresponding to EPOC’s __UHEAP_CHECK) checks for 
differences and dumps details of all the changed objects if it finds any: 

#ifndef NDEBUG 
CMemoryState newState, diffState; 
newState.Checkpoint(); 
if (diffState.Difference( oldState, newState )) 
{ 
 TRACE( "Memory loss - file %s, line %d\n", file, line ); 
   diffState.DumpStatistics(); 
   diffState.DumpAllObjectsSince(); 
} 
#endif  

Known Uses 
Plugging the Leaks is a standard part of virtually every project with memory 
constraints. 

See Also 
Exhaustion Testing often shows up leaks to plug. 

If there are many difficult-to-find small leaks that don’t really impact the system in 
the short term, it can be much easier to use Program Chaining – terminating and 
restarting a process regularly – instead of Plugging the Leaks.   



Thinking Small – The Processes for Creating Small Memory Software Weir, Noble 

 

 © 2004 Charles Weir, James Noble  Page 32 

Exhaustion Test Pattern 
Also known as: Out-of-memory testing. 

How do you ensure that your programs work correctly in out of memory conditions? 

• Functionality that isn’t tested probably won’t work correctly. 

• The functionality of a system includes what it does when it runs out of 
memory. 

• It’s difficult to make a program run out of memory on a normal system. 

• It can be difficult to reproduce errors caused by limited memory. 

Programs that deal gracefully with resource failures — say by using the PARTIAL 
FAILURE or Fixed Memory patterns — have a large number of extra situations to deal 
with, because each resource failure is a different execution event.   

Ideally, you’ll test the program in every situation that will arise in execution.  But 
testing for memory exhaustion failures is particularly difficult because these events 
are by definition exceptional, so they will occur mostly when the system is heavily 
loaded or has been executing for a long period. 

You might create out-of-memory situations by allocating a lot of memory so that the 
system is resource-strapped and the errors do happen.  This has two problems.  First 
it’s difficult to get exactly the same situation each time.  So it will be difficult to 
reproduce any errors you have.   Secondly, in many environments you’ll be running 
your debugging and possibly development systems in the same environment (and 
maybe processes belonging to other users of the system too).  Forcing the system to 
be short of memory will prevent these tools from working correctly as well. 

Therefore: Use testing techniques that simulate memory exhaustion. 

Use a version of the memory allocator that fails after a given number of allocations, 
and verify that the program behaves sanely for all values of this number.  Also use 
another version of the allocator that inserts random failures.  Verify that the program 
implements PARTIAL FAILURE by taking alternative steps to get the job done, or 
MAKES THE USER WORRY by reporting to the user if this is not possible. 

You can combine partial failure testing with more traditional memory testing 
techniques such as the use of conservative garbage collectors to verify that the 
program does not cause resource leaks. 

Consequences 
Using specialised testing techniques reduces the testing cost for a given amount of 
trust in the program.   

It will be easier to replicate the errors, making it easy to debug the problems and 
verify any fixes.  Which reduces the total programmer effort required to get the 
system working. 

However you’ll still need a significant testing cost to be reasonably certain that the resulting 
program will work correctly.  This approach also needs programmer effort to build 
the specialised memory allocators to support the tests.   

Testing doesn’t always detect the results of random and time-dependent behaviour – 
for example where two threads are both allocating independently. 
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Implementation Notes 
Simulating memory failure 

Some systems, such as EPOC and the Purify tool for UNIX and Windows 
environments, provide a version of the memory allocator that can be set to fail either 
after a specified number of allocations or randomly.  For other systems (such as 
MFC), it’s easy to implement this in C++ by redefining the new operator. 

Here’s an example for the MFC environment.  Note that it uses the DEBUG_NEW 
macro, which provides debugging information about allocated blocks (see Plugging 
the Leaks). 

#ifdef MEMORY_FAILURE_TEST 
BOOL MemoryFailureTime();  
# define new MemoryFailureTime() ? (AfxThrowMemoryException(),0) : DEBUG_NEW 
#else 
# define new DEBUG_NEW 
#endif 

#ifdef MEMORY_FAILURE_TEST 
static int allocationsBeforeFailure; 
BOOL MemoryFailureTime() 
{ 
    return allocationsBeforeFailure-- == 0; 
} 
#endif 
     
BOOL TestApp::InitInstance() 
{    
#ifdef MEMORY_FAILURE_TEST 
 allocationsBeforeFailure = atoi( m_lpCmdLine ); 
#endif 
// ... etc. 

An alternative is to implement a debug version of the function ::operator new( size_t 
) with similar behaviour.  

Simulating memory failure by external actions 

There are two approaches to setting up the test.  One common approach is to provide 
a mechanism where user input to the application or system to cause it to fail.  In the 
example above, the user passes an integer as the command line; allocation will fail 
after that number of memory allocations. 

As an alternative the application might put up a dialog (“Will give allocation failure 
after how many allocations?”) where the user enters a number.  Then heap allocation 
fails after that number of allocations.  In EPOC and Purify, this facility is built into 
the runtime debugging environment.  In EPOC, for example, the keystroke XXX 
brings up this dialog. 

The advantage of this approach is that it makes it easy to debug a particular situation 
without needing to perform all the other tests.  It also works well with almost the 
entire system running normally.  The disadvantage however is that for complete 
testing, the user will have to run the system a very large number of times, entering a 
different value each time.  While it might be possible to automate this process by 
using external tools to simulate user input, this would be bound to be cumbersome 
and slow. 

Repeatedly simulating memory failure using test harnesses 

The alternative approach is to write a test harness that runs a particular function or 
piece of code repeatedly, with different values of the ‘allocations until failure’ value.   

This approach is mandatory in a system with very strong test requirements, or one 
using the ‘Extreme Programming’ approach where every test remains as part of the 
development environment and all tests are run early and often. 
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This approach provides much more complete testing of the given functionality.  But 
it’s only realistic for specific functions, and ones that require no user or external 
input to execute. 

Example 
The following is a (much simplified) extract from the test code for part of an EPOC 
application – a class we’ll call CApplicationEngine.    

It uses the heap debugging facility, User::__DbgSetAllocFail(), to set up the 
application (EUser) heap for ‘deterministic failure’ – i.e. failure after a specific 
number of allocations.   

The function MemTest simply calls a given function many times, so that memory 
fails after progressively more and more allocations.  On EPOC memory failure, the 
code always does a ‘Leave’ (EPOC Exception – see Partial Failure), which the code 
can catch using the macro TRAPD.  The test support RTest class simply provides 
output to the tester and to a test log. 

RTest test; 

static void MemTest(void (*aF)()) 
 { 
 for (int iteration=0; ;++iteration) 
  { 
  __UHEAP_FAILNEXT( iteration ); 
  TRAPD(error,(*aF)());  // Equivalent to try...catch... 
  if (error==KErrNone)   // Completed without error? 
   { 
   test.Printf(_L("\r\n")); 
   break; 
   } 
  else 
   { 
   test.Printf(_L("  --  Failed on %d\r\n"),iteration); 
   } 
  } 
 __UHEAP_RESET; 
 } 

The main function, DoTests(), calls MemTest for each testable function in turn: 
static void DoTests() 
 { 
 test.Start(_L("Sheet engine construction")); 
 MemTest(Test1); 
 test.Next(_L("Test set and read on multiple sheets")); 
 MemTest(Test2); 
 // ... etc.  
 test.End(); 
 } 

And a typical testable function might be as follows: 
static void Test1() 
 { 
 CApplicationEngine* theApplicationEngine = CApplicationEngine::NewLC(); 
 theApplicationEngine->SetRecalculationToBeDoneInBackgroundL(EFalse); 
 CleanupStack::PopAndDestroy();  // theApplicationEngine 
 } 

Known Uses 
Exhaustion testing is a standard part of the development of every component and 
application released by Symbian.  The EPOC environment demands PARTIAL 
FAILURE, so each possible failure mode is a part of the application’s functionality. 

The Purify environment for C++ supports random and predictable failure of C++’s 
memory allocator.  Other development environments provide tools or libraries to 
allow similar memory failure testing. 
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Symbian’s EPOC provides debug versions of the allocator with similar features and 
these are used in module testing of all the EPOC applications.  

See Also 
Exhaustion Testing is particularly important where the system has specific processing 
to handle low memory conditions, such as the PARTIAL FAILURE and CAPTAIN OATES 
patterns. 

C++ doesn’t support garbage collection and normally throws an exception on 
allocation failure, so the most likely consequence of incorrect handling of allocation 
failure is a Memory Leak as the exception looses stack pointers to allocated memory.  
So C++ Exhaustion Testing is usually combined with Plugging the Leaks. 
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User Involvement 
Techniques for Handling Memory Constraints in the UI 

 

© 2004 Charles Weir, James Noble. 

Abstract:   
This paper describes some UI design patterns to use when creating software to run in limited 
memory.   

It is a draft version of a chapter to add to the authors’ book Small Memory Software, and 
follows the structure of other chapters in that book. 

Major Technique: User Involvement 

How can you manage memory in an unpredictable interactive system? 

• Memory requirements can depend on the way users interact with the system. 

• If you allocate memory conservatively, the systems functionality may be constrained. 

• If you allocate memory aggressively, the system may run out of memory. 

• The system needs to be able to support different users, who will use the system in 
quite different ways. 

• Users using the system need to perform a number of different tasks, and each task has 
different memory requirements. 

• The system may have to run efficiently on hardware with greatly varying physical 
memory resources. 

• The system’s functionality is more important that its simplicity. 

In many cases, especially in interactive systems, memory requirements cannot really be 
predicted in advance. For example, the memory requirements for the Strap-It-On PC’s word-
processing application Word-O-Matic will vary greatly, depending the features users choose 
to exercise  once user may want voice output, while another a large font for file editing. 
The memory demands of interactive systems are unpredictable because they depend critically 
on what users choose to do with the system.  If you try to produce a generic memory budget, 
you will over-allocate the memory requirements for some parts of the program, and 
consequently have to under-allocate memory for others.  
For many interactive systems, providing the necessary functionality is more important than 
making the functionality easy to learn or to use.  Being able to use a system to do a variety of 
jobs without running out of memory is sufficiently important that you can risk making other 
aspects of the interface design more complicated if it makes this possible.  This is especially 
important because a system’s users presumably know how they will use the system when they 
are actually using it, even through the system’s designer may not no know this ahead of time. 

Therefore:  Make the system’s memory model explicit in its user interface, so that the user makes their 
own decisions about memory. 

Design a conceptual model of the way the system will use memory. Ideally, this model should 
be based on the conceptual model of the system and the domain model, but providing extra 
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information about the system’s memory use. This model should be expressed in terms of the 
objects users manipulate, and the operations they can perform on those objects, rather than the 
objects used directly in the implementation of the system.   

Expose this memory model in your program’s user interface, and let users manage memory 
allocation directly — either in the way that they create and store user interface level objects, 
or more coarsely, balancing memory use between their objects and the program’s internal 
memory requirements.  
For example, Word-O-Matic allows the user to choose how much memory should be allocated 
to store clip-art, and uses all the otherwise unallocated space to store the document.  Word-O- 
Matic also displays the available memory to the user. 

Consequences 
The system can deliver more behaviour to the user than if it had to make pessimistic assump-
tions about its use of memory.  The user can adjust their use of the system to make the most of 
the available memory, reducing the memory requirements for performing any particular task.  
Although the way user memory will be allocated at runtime is unpredictable, it is quarantined 
within the Memory Budget, so the memory use of the system as a whole is more predictable.  
Some user interfaces can even User Involvement about memory fragmentation.  

However: Users now have to worry about memory whether they want to or not, so the system 
is less usable.  Worrying about memory complicates the design of the system and its interface, 
making it more confusing to users, and distracting them from their primary task. Given a 
choice, users will choose systems where they do not have to worry about memory. You have 
to spend programmer effort designing the conceptual model, and making the memory model 
visible to the user. 

Implementation 
There are number of techniques which can expose a system’s memory model to its users: 

• Constantly display the amount of free memory in the system. 

• Provide tools that allow users to query the contents of their memory, and the amount 
of memory remaining. 

• Generate warning messages or dialogue boxes as the system runs out of memory, or as 
the user allocates lots of data. 

• Make the user choose what data to overwrite or delete when they need more memory. 

• Show the memory usage of different components in the system. 

• Tell the user how their actions and choices affect the system’s memory requirements. 

Conceptual Models and Interface Design 

A conceptual model is not the same as an interface design  rather, it is an abstraction of an 
interface design (see Constantine & Lockwood 1999, Software for Use).  Where an interface 
design describes the way an interface looks and behaves in detail, a conceptual model 
describes the objects that should be present on a given part of an interface, the information 
those objects need to convey to users, and the operations users should be able to carry out 
upon those objects.  To design an interface that presents memory constraints to the user, you 
should first determine what information about memory interface needs to present and how 
that information is related to the existing information managed by the user interface, and only 
then consider how to design the appearance and behaviour of the interface to present the 
information about memory use.   
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Granularity of Modelling 

Conceptual models of memory use can be built with varying degrees of sophistication and 
differing amounts of detail.  A very coarse model  perhaps modelling only users’ and the 
system’s memory consumption  will lead to a very simple interface that is easy to operate 
but may not provide enough information to make good decisions about memory use.  A more 
fine grained model, perhaps associating memory use figures with every domain object in the 
interface, will give more control to users, but be more complex and more difficult to operate.  
Very detailed models that reify internal system components as concepts in the interface (so 
that the “font renderer” or “file cache” are themselves objects that users can manipulate) can 
provide more control, at a cost of further increase the complexity of the application. 

Static and Dynamic Modelling 

Conceptual models of memory use can be made statically or dynamically.  Static models do 
not depends on details of a particular program run, so they can embody choices mad as the 
system was designed, or configuration parameters applied as the system begins running. In 
contrast, dynamic decisions are made as the program is running.  A conceptual model of a 
system’s memory use may describe static parameters, dynamic parameters, or a mixture of 
both. Generally static models makes it easier to give guarantees about a system’s behaviour, 
because they cannot depend on the details of a particular run of a system. In contrast, 
precisely because they may depend on differences between runs, dynamic models can be more 
flexible, changing during the lifetime of the system to suit the way it is used, but also run the 
risk of running out of memory. 

General Purpose Systems 

The more general a system’s purpose, the more difficult memory allocation becomes. A 
system may have to support several radically different types of users – say from novices to 
experts, or from those working on small jobs to those working on big jobs.  Even the work of 
a single user can have different memory requirements depending upon the details of the task 
performed: formatting and rasterising text for laser printing may have completely different 
memory requirements to entering the text in the first place. Also, systems may need to run on 
hardware with varying memory requirements.  Often the memory supplied between different 
models or configurations of the same hardware can vary by a several orders of magnitude and 
the same program may need to run on systems with 128Kb of memory to systems with 128M 
or more. 

Supporting Different User Roles 

Different users can differ widely in the roles they play with respect to a given system, and 
often their memory use (and interest in or capability to manage the system’s memory use) 
depends upon the role they play.  For example, the users of a web-based information kiosk 
system would play two main roles with respect to the system  a casual inquirer trying to 
obtain information from the kiosk, and the kiosk administrator configuring the kiosk, choosing 
networking protocol addresses, font sizes, image resolutions and so on.  The casual inquirer 
would have no interest in the system’s model of memory use, and no background or training 
to understand or manipulate it, while the kiosk administrator could be vitally concerned with 
memory issues. 
The techniques and processes of User Role Modelling from Usage-Centered Design 
(Constantine & Lockwood, 1999) can be used to identify the different kinds of users a system 
needs to support, and to characterise the support a system needs to provide to each kind of 
user. 
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Examples 
For example, after it has displayed its startup screen, the Strap-It-On wrist mounted PC asks 
its user to select an application to run. The select an application screen also displays the 
amount of memory each application will need if it is chosen. 

[note: all scanned pictures to be redrawn]. 

 

 

Specialised Patterns 
The rest of this chapter contains five patterns that present a range of techniques for making 
the user worry about the systems memory use.  It describes ways that a user interface can be 
structured, how users can be placed directly in control of a system’s memory allocation, 
anddescribes how the quality of a user interface can be traded off against its memory use. 

FIXED SIZED USER MEMORY describes how user interfaces can be designed with a small 
number of user memories. Controls to access these memories can be designed directly into the 
interface of the program, making them quick and easy to access.  Fixed sized user memories 
have the disadvantages that they do not deal well with user data objects of varying sizes, or 
more than about twenty memory locations. 

VARIABLE SIZED USER MEMORY allows the user to store variable numbers of varying sized data 
objects, overcoming the major disadvantages of designs based on fixed sized user memory.  
The resulting interface designs are more complex than those based on fixed sized memory 
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spaces, because users need ways of navigating through the contents of the memories and must 
be careful not to exhaust the capacity. 

MEMORY FEEDBACK, in turn, addresses some of the problems of variable sized user memory: 
by presenting users with feedback describing the state of a system’s memory use, they can 
make better use of the available memory.  Providing memory feedback has a wider 
applicability than just managing user memory, as the feedback can also describe the system’s 
use of memory — the amount of memory occupied by application software and system 
services. 

USER MEMORY CONFIGURATION extends Memory Feedback by allowing users to configure the 
way systems use memory. Often, information or advice about how a system will be used, or 
what aspects of a system’s performance are most important to its users, can help a system 
make the best use of the available memory. 

Finally, LOW QUALITY MULTIMEDIA describes how multimedia resources — a particularly 
memory-hungry component of many systems — can be reduced in quality or even eliminated 
altogether, thus releasing the memory they would otherwise have occupied for more important 
uses in the system. 

See Also 
The memory model exposed to the user may be implemented by FIXED ALLOCATION or 
VARIABLE ALLOCATION — FIXED SIZE USER MEMORY is usually implemented by FIXED 
ALLOCATION and VARIABLE SIZE USER MEMORY is usually implemented by VARIABLE 
ALLOCATION.   

FUNCTIONALITY A LA CARTE [Adams 95] can present the costs and benefits of memory 
allocations to the user. 

A static MEMORY BUDGET can provide an alternative to USER MEMORY CONFIGURATION that 
does not require users to manage memory explicitly, but that will have higher memory 
requirements to provide a given amount of functionality. 

The patterns in this chapter describe techniques for designing user interfaces for systems that 
have limited memory capacity.  We have not attempted to address the must wider question of 
user interface design generally — as this is a topic which deserves a book of its own.  
Schneiderman's User Interface Design is a general introduction to the field of interface 
design, and Constantine and Lockwoods’ Software for Use presents a comprehensive 
methodology for incorporating user interface design into development processes. Both these 
texts discuss interface design for embedded systems and small portable devices as well as for 
desktop applications. 

______________________________ 
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Fixed Size User Memory 
Also known As: Fixed Number of User Memories 

How can you present a small amount of memory to the user? 

• You have a small amount of user-visible memory. 

• Users need to store a small number of discrete items in the memory 

•  Every item users need to store is roughly the same size 

• Users need to be able to retrieve data from the memory particularly easily. 

• Users cannot tolerate much extra complexity in the interface. 

Some systems have only a small amount of memory available for storing the users’ data (and 
presumably only a small amount of data that users can store). This user data is often a series 
of discrete items — such as telephone numbers or configuration settings where each item is 
the same size. For example, the Strap-It-On needs to definitions for its voice input feature. 
Each macro requires enough memory to recognise a three second spoken phrase of the user's 
choice, and the commands that are to be executed when the voice macro facility recognises 
that phrase. 

Users need to be able to retrieve data from memory quickly and easily — after all, that’s why 
the system is going to the trouble to store such a small amount of data. For example, the point 
of the Strap-it-On’s voice input macros are to make data entry more efficient, streamlined, and 
“fun to do all day” (to quote the marketing brochure).  Similarly music synthesisers store 
multiple ‘patches’ so that they can be quickly recalled during a performance, and phones store 
numbers because people want to dial them quickly. 

One approach to this problem is to let the user choose things to store, until the device is out of 
memory, when it stops accepting things. This is quite easy to implement but gets pretty 
unsatisfactory when there’s only a small amount of memory.  Users will tend to get the idea 
that the device has infinitude of memory, and consequently will be surprised when the system 
refuses their requests. Also, you’ll need some kind of interface to retrieve things from the 
memory, to delete things that have already been stored, and so on — all of which will just 
take up more precious memory space. 

Therefore: Provide a small, fixed number of memory spaces, and let the user manage them 
individually. 

Design a fixed number of “user memories” as explicit parts of the user interface conceptual 
model.  Each user memory should be represented visually as part of the interface, and the 
design should make clear that there are only a fixed number of user memory spaces — 
typically by allocating a single interface element (often a physical or virtual button) for each 
memory.  Ideally each memory space should be accessed directly via its button (or via a 
sequence number) to reinforce the idea that there are only a fixed number of user memories.  

The user can store and retrieve items from a memory space by interacting with the interface 
element(s) that represent that user memory.  Ideally the simplest interaction, such as pressing 
the button that represents a user memory, retrieves the contents of the memory — restoring 
the device to the configuration stored in the memory, running the macro, or dialling the 
number held in that memory.  Storing into a user memory can be a more complex interaction, 
because storing is performed much less frequently than retrieval.  For example, pressing a 
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“store” button and then pressing the memory button might store the current configuration into 
that memory. Any other action that uses the memory should access it in the same way. 

Finally, an interface with a fixed number of user memories does not need to support an 
explicit delete action from the memories: the user simply chooses which memory to 
overwrite. 

For example, the Strap-It-On allocates enough storage for nine voice macros.  This storage is 
always available (it is allocated permanently in the memory budget; the setup screen is 
quickly accessible via the Strap-It-On's operating system, and is designed to show only the 
nine memory spaces available.  

Consequences 
The idea that the system has a number of memory spaces into which users can store data is 
obvious from the its design, making the design easy to learn. The fixed number of user 
memory spaces becomes part of users’ conceptual model of the system, and the amount of 
memory available is always clear to users. Because the number of memories is fixed, the 
interface can be designed so that users can easily and quickly choose which memory to 
retrieve.  The graphical layout of the interface is made easier, because there are always the 
same number of memories to display. 

However: The user interface architecture is strongly governed by the memory architecture.  
This technique works well for a small number of memory spaces but does not scale well to 
allocating more than twenty or thirty memory spaces, or storing objects of more than two or 
three different sizes.  User interfaces based on a fixed number of user memories are generally 
less scalable than interfaces based on some kind of variable allocation.  Increasing the size of 
a variable memory may simply require increasing the capacity of a browser or list view, but 
increasing the number of fixed user memories can require a redesign of the interface, 
especially if memories are accessed directly. 

Implementation 
There are three main interface design techniques that can be used to access fixed size user 
memories — direct access, banked access, and sequential access.  This illustrates the 
difference between a conceptual model and in interface design — the same conceptual model 
for fixed sized user memories can be realised in several different ways in an actual user 
interface design. 

Direct Access.  For a small number of user memories, allocate a single interface element to 
each memory. With a single button for each memory, pressing the button can recall the 
memory directly — a fast and easy operation. Unfortunately, this technique is limited to 
sixteen or so memories because few interfaces can afford to dedicate too many elements to 
memory access. 

For example, the drum machines in the ReBirth-338 software synthesiser provide a fixed size 
user memory to store drum patterns. The sixteen buttons across the bottom of the picture 
below correspond to sixteen memory locations storing sixteen drum beats making up a single 



User Involvement  Weir, Noble 

 © 2004 Charles Weir, James Noble  Page 8 

pattern  we can see that the bass drum will play on the first, seventh, eleventh and fifteenth 
beat of the pattern. 

Banked Access. For between ten and one hundred elements, you can use a two dimensional 
scheme. Two sets of buttons are used to access each memory location — the first set to select 
a memory bank, and the second set to select an individual memory within the selected bank.  
Banked access requires many fewer interface elements than direct access given the same 
number of memory spaces, but is still quite quick to operate.   

Again following hardware design, the ReBirth synthesiser can store thirty-two patterns for 
each instrument in emulates. The patterns are divided up into four banks (A, B, C, D) of eight 
patterns each, and these patterns are selected using banked access. 

 

Sequential Access.  For even less hardware cost (or screen real estate) you can get by with 
just a couple of buttons to scroll sequentially through all the available memory spaces.  This 
approach is quite common on cheap or small devices because it has a very low hardware cost 
and can provide access to an unlimited number of memories.  However, sequential scrolling is 
more difficult to use than direct access, because more user gestures are required to access a 
given memory location, and because the memory model is not as explicit in the interface. 

A ReBirth song is made up of a list of patterns. The control below plays through a stored 
song. To store a pattern into a song, you select the position in the song using the small arrow 

controls to the left of the “Bar” window, and then choose a pattern using the pattern selector 
shown above. 

Single Memories 

Special cases of fixed sized user memory are systems that provide just one memory space. For 
example, many telephones have a "last number redial" feature — effectively a single user 
memory set after every number is dialled.  Similarly, many laptop computers have a single 
memory space for storing backup software configuration parameters, so that the machine can 
be rebooted if it is misconfigured.  A single memory space is usually quick and easy to access, 
but obviously cannot store much information. 

Memory Exhaustion 

One advantage of fixed size user memory designs is that users should never experience 
running out of memory — rather, they will just have to decide which user memory to 
overwrite. Certainly, if all memories (either full or empty) are accessed in the same way, the 
system never needs to produce any error messages explaining that the system has run out of 
memory. 

Storing Variable Sized Objects 

A fixed number of fixed sized memory locations does not cope well when storing objects of 
varying sizes. If an item to be stored is too small for the memory space, the extra space is 
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wasted.  If an item is too large, either it must be truncated, or  it must be stored in two or more 
spaces (presumably wasting memory in the last overflow space), or the user must be 
prevented from creating such an item in the first place. 

Alternatively, if an interface needs to store just two or three different kinds of user data 
objects (where each kind of object  has a different size) the interface design can have a 
separate set of user memories for each kind of object that needs to be stored.  This doesn’t 
avoid the problem completely, since the size and number of the memory spaces must be 
determined in advance, and it is unlikely that it will match the number of objects of the 
appropriate kind that each user wishes to store. 

Initialising Memories 

An important distinction in the design of conceptual models for fixed size user interfaces is 
whether the system supports a fixed sized number of memory spaces or a fixed sized number 
of objects.  The differences is that if the system as a number of memory spaces, some of the 
spaces can be empty, but it doesn't make sense to have a empty object stored in a memory 
space.  In general, designing in terms of objects is preferable to designing in terms of memory 
spaces. For example, there is no need to support retrieve operations on empty spaces if there 
can be no empty spaces, For this to work, you need to find good initial contents for the objects 
to be stored. The memory spaces of synthesisers and drum machines, for example, are 
typically initialised with useful sounds or drum patterns than can be used immediately, and 
later overwritten. 

One compensating advantage of having the idea of empty memories in a conceptual model is 
that you can support an implicit store operation that stores an object into some empty memory 
space, without the user having to chose the space explicitly.  This certainly makes the store 
operation easier, but (unlike a store operation that  explicitly selects a memory space to 
overwrite), and implicit store operation can fail due to lack of memory — effectively treating 
the fixed size memories as if they were variable sized. The Nokia 2210e mobile phone 
supports implicit stores into its internal phone book, but, if there are no empty memories, 
users can choose which memory to overwrite. 

Naming Memories 

Where there are more than four or five memories — and certainly where there are more than 
sixteen or so — you can consider allowing the user to name each memory to make it easier for 
users to remember what is store in each memory space.  A memory name can be quite short — 
say eight uppercase characters — and so can be stored in a small amount of memory using 
simple STRING COMPRESSION techniques.   

Of course, there is still a trade-off between the memory requirements for storing the name and 
the usability of a larger number memories, but there is no user providing a system with large 
numbers of memories if users can’t actually find the things they have store in them.  If the 
system includes a larger amount of preset data in stored in READ-ONLY STORAGE you can 
supply names for these memories, while avoiding naming user memories stored in scarce 
RAM or writeable persistent storage. 

Examples 
The StrapItOn PC has nine memories that can be used to store voice input macros. Each 
memory is represented by one of nine large touch-sensitive areas on the StrapItOn’s screen.  
To record a macro, the user touches the are representing the memory where they want to store 
the macro  if this memory is already in use, the existing macro is overwritten. 
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The Korg WaveStation synthesiser contains several examples of fixed sized user memories.  
The most obviously is that its user interface includes five soft keys that can be programmed 
by the user to move to a particular page in the WaveStation's menu hierarchy.  The soft keys 
are accessed by pressing a dedicated "jump" key on the front panel, and then one of the five 
physical keys under the display. 

The main memory architecture of the WaveStation is also based firmly on fixed sized user 
memories. Each WaveStation can store thirty-two 'performances', that can refer to up to four 
'patches', each of which can play one of thirty-one 'wave sequences'.  Patches and 
performances have different sizes, and each are stored in their own fixed-sized user memories, 
so if you run out of patch storage, you cannot utilise empty performance memories. Patch and 
performance memories are addressed explicitly using memory location numbers entered by 
either cursor keys, turning a data-entry knob, or typing the number directly using a numeric 
keypad. Patches and performances can also be named --- performances with up to sixteen 
characters, patches with only ten. 

Each wave sequence may refer to up to two hundred waves, however the total number of 
waves referred to by all wave sequences cannot exceed five hundred.  (Approximately five 
hundred waves are stored in ROM, and a wave sequence describes an order in which the 
ROM waves should be played).  Waves are added implicitly to wave sequences using the 
"enter" key --- if either of the limits on individual or total wave sequence lengths is exceeded, 
the WaveStation displays an :"Out of Memory" error message (see the MEMORY NOTIFIER 
pattern.) 

[Picture to be drawn from manual -- currently en route from Sydney to Wellington. Numbers 
to be checked against the manual!] 

Known Uses 
Music others synthesisers often provide a small fixed number of memory locations for 
programs, and users think of these systems as having just that number of memories.  For 
example, the Yamaha TX-81Z synthesiser provided 128 preset patches (synthesiser sound 
programs) organised as four banks of 16 patches each, plus one bank of 16 user-
programmable patches.  The TX-81Z also included 16 memories for “performances” 
including references to patches but also information about the global state of the synthesiser 
(such as MIDI channel and global controller assignments) — performances were user data 
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objects of different sizes to the patches. The TX-81Z also included some other user memories 
for other things, such as microtonal scales and delay effects. 

GSM mobile phone SIM cards are smart cards that store a fixed number of phone memories 
containing name and number (the number of memories depends on the SIM variant).  Users 
access the memories by number.  Many telephones have something similar, though simpler 
systems don’t store names. The same SIM cards can also store a fixed number of received 
SMS (short message service) text messages — the user is told if a message could not be 
stored because the store overflowed. SIM cards can also store a fixed number of already read 
messages in a numbered store.  This store is visible to the user and accessed by message 
number. 

The FORTH programming environment stored source code in 1024 character blocks.  This 
allowed the system to allocated a fixed sized buffer for the text editor, made screen layout 
simple (16 lines of 64 characters that could be displayed on a domestic TV screen) and to 
store each block in a single 1024 byte sector on a floppy disc.  Each block on disc was directly 
referenced by its sequence number.  

An early Australian laser printer required the user to uncompress typefaces into one of a fixed 
number of memory locations.  For example, making Times Roman, Times Roman Italic, and 
Times Roman Bold typefaces available for printing would require three memory locations 
into which ROM Times Roman bitmaps could be uncompressed, with some bitmap 
manipulations to get italic and bold effects. Documents selected typefaces using escapes 
codes referring to memory locations.  Larger fonts had to be stored into two or more 
contiguous locations, making the user worry about memory fragmentation as well as memory 
requirements, and giving very interesting results if an escape code tried to print from the 
second half of a font stored in two locations. 

Many video games store just the top 10 scores (and the three initials of the players who scored 
them).  This has a number of advantages: it requires very little memory, allows a constant 
graphical layout for the high-score screen, and adds automatically overwrites the 11th best 
score when they have been beaten, increasing player’s motivation. 

The Ensoniq Mirage sound sampler was the ultimate example of User Involvement. The poor 
user — presumably a musician with little computer experience — must allocate memory for 
sound sample storage by entering two digit hexadecimal numbers using only increment and 
decrement buttons. Each 64K memory bank could hold up to eight samples, provided each 
sample was stored in a single contiguous memory block.  In spite of the arcane and frustrating 
user interface (or perhaps because of the high functionality the interface supported with 
limited and cheap hardware) the Mirage was used very widely in the mid-1980s popular 
music, and maintains a loyal if eccentric following ten years later. 

See also 

VARIABLE-SIZED USER MEMORY offers an alternative to this pattern that explicitly models a 
reservoir of memory in the system, and allows users to store varying numbers of variable 
sized objects. 
MEMORY FEEDBACK can be used to show users which memories are empty and which are full, 
or provide statistics on the overall use of memory (such as the percentage of memories used or 
free). 
Although systems' requirements do not generally specify FIXED SIZED USER MEMORIES, by 
negotiating with your clients you may be able to arrange a FEATURECTOMY. 
A MEMORY BUDGET can help you to design the number and sizes of FIXED SIZED USER 

MEMORIES your system will support. 
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You can use FIXED ALLOCATION to implement fixed sized user memories. 
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Variable-Sized User Memory 
How can you present a medium amount of memory to the user? 

• You have a medium to large amount of user-visible memory 

• Users need to store a varying number of  items in the memory 

• The items users can store vary in size 

• The memory requirements for what the user will need to store are unpredictable. 

Some programs have medium or large amounts of memory available for storing user data.  For 
example, the Strap-It-On wrist-portable PC provides a file system to allow users to store 
application data.  Files can vary in size from a few words to several pages, and within the 
bounds of the systems memory, some users store a few large files while other users store 
many small files. The behaviour of some users changes over time — one week storing many 
small files, the next one large file, the next a mixture. 

One approach to organising the memory would be to provide FIXED SIZED USER MEMORY. The 
system could allocate a fixed number of fixed-sized spaces to hold memos the user wishes to 
store. Of course, this suffers from all the problems of fixed allocation: memory spaces holding 
small memos will waste the rest of the space, and long memos must somehow be split over a 
number of different spaces.  Another alternative would be to require users to pre-allocate 
space to store memos, but this requires users to be able to accurately estimate the size of a 
new memo before it is created, and the pre-allocation step will greatly complicate the user 
interface. 

Therefore: Randomly allocate users' objects from a reservoir of free memory. 

Allow the user to store and retrieve items flexibly from the systems’ memory reservoir.  The 
reservoir does not have to be made explicit in the interface design — although it may be. Each 
item stored in the memory should be treated as an individual object in the user interface, so 
that users can manipulate it directly. You also need to provide an interface to allow the user to 
find particular items they want to use, and to explicitly delete objects from the reservoir 
making the memory space available for the storage of new objects.  

For example, the Strap-It-On uses VARIABLE SIZED USER MEMORY for its file system. A 
reservoir large enough to hold ten thousand words (about a hundred thousand characters of 
storage) is allocated to hold all the users' files.  When users create new files they are stored 
within the reservoir until they are explicitly deleted. The file tool displays the memory used 
by every file in a browser view, the percentage of free memory left in the reservoir pool in its 
status line, and also uses error messages to warn the user when memory use exceeds certain 
thresholds (90%, 95% 99%). 

Consequences 
Users can store new objects in memory quite easily, provided there is enough space for them. 
Users can make flexible use of the main memory space, storing varying numbers and sizes of 
items to make the most of the systems capacity — effectively reducing the system’s memory 
requirements.  Users don’t need to choose particular locations in which to store items or to 
worry about accidentally overwriting items or to do pre-allocation, and this increases the 
system’s usability. 

Variable sized memory allocation is generally quite scalable, as it is easier to increase the size 
of a reservoir (or add multiple separate reservoirs) than to increase the number of fixed size 
memories. 
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However: The program’s memory model is exposed.  The user needs to be aware of the 
reservoir, even though the reservoir may not be explicitly presented in the interface. The user 
interface will be more complex as a result, and the graphical design will be more difficult.  
Users will not always be aware of how much memory is left in the system, so they are more 
likely to run out of memory. 

Any kind of variable allocation decreases the predictability of the program’s memory use, and 
increases the possibility of memory fragmentation.  Variable sized allocation also has a higher 
testing cost than fixed sized allocation. 

Implementation 
Although a variable sized user memory can give users an illusion of infinite memory, memory 
management issues must still lurk under this façade: somewhere the system needs to record 
that the objects are all occupying space from the same memory reservoir, and that the 
reservoir is finite. Even if the reservoir is not explicit in the interface design, try to produce a 
conceptual model for the use of memory which is integrated with the rest of the system and 
the domain model, so that the user can understand how the memory management works. 
Consider using MEMORY FEEDBACK to keep the user informed about the amount of memory 
used (and more importantly, available) in the reservoir — typically by listing the amount of 
memory occupied by objects when displaying the objects themselves. 
A conceptual model based on variable sized user memory is more sophisticated than a similar 
model built on fixed sized user memory. A model of variable sized user memory must include 
not only empty or full memory locations, but also a more abstract concept of "memory space" 
that can be allocated between newly created objects and existing objects if their size 
increases. The objects that can be stored in user memory can also be more sophisticated, with 
varying sizes and types. 

Multiple Reservoirs 

You can implement multiple reservoirs to model multiple hardware resources, such as disks, 
flash ram cards, and so on. Each separate physical store should be treated as an individual 
reservoir. You need to present information about each reservoir individually, as the amount 
and percentages of free and used memory. You can also provide operations that work on 
whole reservoirs, such as backing up all the objects in once reservoir into another or deleting 
all the objects stored in a reservoir. 

You will also need to ensure that the user interface associates each object with the reservoir 
where it is stored — typically by using reservoirs to structure the way information about the 
objects is presented, by grouping all the objects in a reservoir together.  For example, most 
desktop GUI filing systems show all the files in a single disk or directory together in one 
window, so that the association between objects and the physical device on which they are 
stored is always clear. 

Fragmentation 

As with any kind of VARIABLE SIZED DATA STRUCTURE, the reservoir of user object memory 
may be subject to fragmentation.  This can cause problems as the amount of memory that is 
reported as being available may be less than the amount of memory that can be used in 
practice. So for example, while the Strap-It-On’s file memory may have 50K free characters, 
the largest single block might be only 10K – not enough to create a 15K email message. 

One way to avoid this problem is to show users information about the largest free block of 
memory in each reservoir, rather than simply the amount of free memory. Another approach is 
to implement MEMORY COMPACTION — say with a user initiated compaction operation, in the 
same way that PC operating systems include explicit defragmentation operations.  
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Unfortunately, both these approaches complicate the users' conceptual model of the interface 
to include fragmentation.  An alternative approach is to choose a data structure that does not 
require explicit compaction, either by compacting the structure automatically on every 
operation, or using a linked structure that splits objects across separately allocated memory 
blocks and so does not need compaction to use all the available space. 

Caching and Temporary Storage 

Caching can play havoc with the user's model of the memory space if applications trespass on 
that memory for caches or temporary storage.  For example, many web browsers (including 
the Strap-It-On’s Weblivion) cache pages in user storage, and browsers on palmtop and 
desktop machines similarly maintain temporary caches in user file storage.  The minor 
problem here is that naïve measurements of the amount of free space will be too low, as some 
of the space is allocated to caches; the major problems is that unless the memory is somehow 
released from the caches it cannot be used for application data storage. 

The CAPTAIN OATES pattern describes how you can design a system so that applications 
release their temporary storage when it is required for more important or permanent uses. The 
key to this pattern is that when memory is low, the system should signal applications that may 
be holding cached data.  In response to receiving the signal, any applications holding cached 
data should release the caches. 

Examples 
A Psion Series 5 allows users to store text files and spreadsheet files in persistent storage 
reservoir (call a “drive” but implemented by battery backed up RAM). The browser interface 
illustrated in the figure below shows the files stored in a given drive, and the size of each file.  
Clicking on the “drive letter” in the bottom left hand corner of the screen produces a menu 
allowing users to view a different reservoir.  

 
The StrapItOn PC can also list all the files in its internal memory, and also always lists their 
sizes. 
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 [KJX hotmail account smallersoftware@hotmail.com] 

Known Uses 
Most general purpose computers provide some kind of variable sized user memory for storing 
users’ data — either in a special region of (persistent) primary storage, such as the PalmPilot, 
Newton, and Psion Series 5, or on secondary storage, if the form factor permits.  Similarly, 
multitasking computers effectively use variable sized user memory — users can run 
applications of varying sizes until they run out of memory.  

[More examples to do: Akai series of audio samplers; sequences; MP3 players?] 

See also 
You probably need to use VARIABLE ALLOCATION to implement variable sized user memory.  
MEMORY FEEDBACK can help the use avoid running out of memory.  The size of the reservoir 
may be able to be set by USER MEMORY CONFIGURATION. FIXED SIZED USER MEMORY can be an 
alternative to this pattern if only a few, fixed sized objects need to be stored.  
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Memory feedback 
How can users make good decisions about the use of memory? 

• You have a VARIABLE SIZED USER MEMORY  

• There is a medium to large amount of memory available 

• Memory is proving a constraint on program functionality 

• Users are managing some form or memory allocation 

• Users memory allocation choices affect the performance or functionality of the system. 

Some systems have reasonably large amounts of memory available, but memory allocation is 
difficult — typically because the memory allocation needs to match users’ priorities or tasks 
and these are unpredictable, changing over time and between different users. For example, the 
StrapItOn has a fair amount of main memory, but this is quickly used up if users open too 
many applications simultaneously. 

One way to deal with these problems is for users to accept some of the burden of managing 
the systems memory, perhaps by using VARIABLE SIZED USER MEMORIES — indeed, this is the 
solution adopted by the Strap-It-On’s designers. Unfortunately, this solution raises another 
problem: how can the users get enough information to manage the memory effectively? 
Presumably memory allocation matters, and is too difficult to leave to the system — this is 
why users have been given the responsibility.  But users need to make good memory 
allocation choices, or else the system won’t work. 

Other solutions are to provide information in printed documentation or in the help system 
about how the users’ choices affect the memory of the system.  But, in an interactive system 
where memory use changes dynamically at every run, this isn’t really enough, because 
theoretical knowledge doesn’t help work out what is wrong with the system’s memory 
allocation right now, or how any changes to the allocation will affect the functioning of the 
system1. 

Therefore: Provide feedback to users about the current memory use, and the consequences of their 
actions. 

As part of your interface design, you should have produced a conceptual model of the way the 
system uses memory (see USER INVOLVEMENT). Design ways to present the information in this 
model to users, as and when they need it. Include widgets in the display that tell users how 
much memory they have left, and lets them know the consequences of their decisions on the 
use of memory. These controls should be able to be accessed at any time, and integrated with 
the rest of the interface. 

For example, the Strap-It-On user interface includes a dialog showing the user all the 
applications that are running, and how much memory is allocated to each application. This 
dialog is easy to reach from any application running on the StrapItOn. Furthermore, when the 
system runs low on memory, a variant of this dialog is displayed that not only lists all the 
applications and their memory usage, but also invites the user to terminate one of them to free 
up some memory space. 

                                                      
1 Unless you are the kind of person who can intuit memory problems from the feel of the 
systems command line. There are people like this. 
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Consequences 
Users are in better contact with the memory use of their systems. Their mental models about 
the way the system uses memory may be more likely to reflect the way the system uses 
memory. The usability of the system as a whole is increased (although still less than a system 
where users don’t have to worry about memory).  

Because users know how much memory is available, they are less likely to exhaust the 
system’s memory. 

However: The user needs a more sophisticated mental model of the system, and its 
implementation, that is, the way the system uses memory. This isn’t really anything to do with 
the user’s work, as it’s an artefact of the implementation. The information about memory can 
confuse or distract the user from their primary task. Programmer effort will be required to 
implement the actual feedback interface elements, and programmer discipline may be required 
so that other parts of the system provide the necessary information to the feedback interface.  

Memory feedback has to be tested independently, increasing the testing cost of the program. 

Implementation 
There are four main ways to provide feedback 

• Memory report — an explicit report on the systems memory utilisation 

• Memory meter— a continuous (unintrusive) meter of the systems memory use 

• Memory notifier — a proactive warning when memory exhaustion is near 

• Massive feedback — the system partially fails under memory exhaustion 

Memory Report 

A memory report simply reports the memory use of the system, describing the various 
components consuming memory, and the amount of memory consumed by each component.  
Of course, the information presented in the report should be in terms of the system’s 
conceptual model for memory use.  Similarly, the units used to describe the memory should 
be comprehensible by most users, such as percentages or some other measure with typical 
values in double figures.  A memory report can often be combined into the interface used to 
allocate, delete and browse FIXED SIZE USER MEMORY OR VARIABLE SIZED USER MEMORY 
because the information needed for all these tasks are so similar.   

Because there are typically quite a few components in the system consuming memory, a 
memory report will need to provide a fair amount of detail to the user and take up quite a bit 
of screen space.  So memory reports usually have to be designed as a part of the interface for 
users to request explicitly.  One of the main purposes for the memory report is for the user to 
find out where the memory is being used in the system, so the report should be sorted in order 
of the memory consumption of each component, with the largest component first. 

In an interactive system is it better if the display can be updated to reflect the instantaneous 
state of the memory in the system, although this will take code and effort. Alternatively, a 
memory report may be a passive display that is calculated each time it is requested. 

For example, users of the Psion Series 5 can request a dialog box that provides a memory 
report, giving the total amount of user memory available, the amounts used and free, and the 
percentage of memory used.  
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Memory Meter  

A memory meter is a continuous display of the amount of free memory in the system. Because 
a memory meter is displayed continuously, it needs to be small an unintrusive part of the 
interface, so it cannot present the same amount of information as a memory report. To provide 
more information, make a memory report easily accessible via the memory meter. 

The Psion Series 5 can also constantly display a memory meter listing the amount of free user 
memory (shown towards the left side of the screen in the above illustration).   

Memory Notifier 

A memory notifier is a proactive interface element (such as a popup warning window or audio 
signal) which is used to warn the user that the system’s memory use is reaching a critical 
stage — such as no memory left to allocate!  More usefully, memory notifiers can be 
generated as the systems memory gets low, but before it is totally exhausted, to give the user 
time to recover, or even as a warning in advance of any operation that is likely to allocate a 
large amount of memory.  Of course, since notifier messages are modal, they will interrupt the 
work users are trying to do with the system and have to be explicitly dismissed. Because of 
this, they should be saved for situations where user intervention of some kind really is 
required, and memory meters used to give warnings in less critical situations.  For example 
the following Figure is displayed by the Psion Series 5 voice recorded application, to indicate 
that it has run out of memory and consequently has had to stop recording. 

 
As with all notifier messages and dialog boxes, a memory notifier should provide information 
about thereason for the notification and the actions the user can take to resolve the problem — 
either through an informative message in the notifier, or through a help message associated 
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closely with it.  Typically, a memory notifier should suggest something users can do to reduce 
the system's demands for memory. 

The major technical problem with implementing notifier messages (and then contingent help) 
is that memory notifiers by definition appear when the system is low on memory, so there is 
often little memory available that can be used to display the notifier.  Windows CE, for 
example, provides a special system call to display an out of memory dialog box in the system 
shell.  The shell preallocates the resources required by this dialog box so that it can always be 
displayed. 

if (!(addr = (VirtualAlloc(stuff))) { 
 SHShowOutOfMemory(hwndowner, 0); 
 return E_OUT_OF_MEMORY; 
} 

 
 
 
Passive Feedback 

If temporary memory exhaustion causes computations to suffer Partial Failure or multimedia 
quality to drop, the results of the computation or multimedia can simply be omitted — output 
windows remain blank, the frame rate or resolution of generated images is reduced, and so on.  
Users notice this drop in quality, and free memory by shutting down other tasks so that the 
more important tasks can proceed.   
Passive notification makes memory exhaustion produce the same symptoms as many other 
forms of temporary resource exhaustion (such as CPU overload, network congestion, or 
thrashing). This has the advantage that the same remedy (reducing the load on the system) can 
relieve all of these problems, but the disadvantage that the precise cause of the overload is not 
immediately clear to users. 

Passive Feedback should never be used to report exhaustion of long-term memory — use a 
memory notifier for this case. Precisely because passive feedback is passive, it may not be 
noticed by users, which, in the case of long term memory, comes to silently throwing away 
users’ data.  
Ward Cunningham’s Checks pattern language for information integrity describes a general 
technique for implementing Passive Feedback. [Cunningham PLOPD2] 

Standard interfaces or Special-purpose interfaces 

There are generally two alternatives for incorporating memory information into a user 
interface — either the application's general purpose displays can be extended to include 
memory information, or special purpose displays can be designed that focus on memory 
information.  

Extending an application’s standard, general purpose displays has several advantages: the 
memory feedback can be tightly integrated with the domain information present by the 
application; because of this integration, the feedback can be easily incorporated into each 
user’s model of the system; and users don’t need to learn a new part of the interface to 
manage memory.   

A good example of this kind of integration can be found in many file system browers 
(including those of Windows, the Macintosh, and the PalmPilot), that seamless include file 
size information along with other information about the files.  Indeed, size information has 
listed along with file names for so long that most habitual users of computer systems expect it 
to be listed, and do not realise that the size of each file is really an implementation concern to 
help them manage the system’s memory.  The illustration shows how Windows Explorer lists 
file sizes as the second most important piece of information about a file, other than the file 
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name.  On the other hand, including memory feedback in an integrated view does mean users 
are present with it whether or not they really need to know about it, and this also takes up 
screen real estate that could be used for to display more useful information, such as files’ full 
names and  types. 

. 

Alternatively, you can design special purpose displays to present your memory feedback, 
rather than integrating then directly into your application’s main interface.  This avoids 
cluttering up the display to present users with memory feedback that they do not need, but of 
course makes it more difficult for users to use, and to learn about, the memory feedback that 
you do provide.  Separate interfaces also make it easier to provide special purpose operations 
(such as formatting or backing up a storage device) that are not really part of the operations in 
the system’s domain. 

As with any user interface, it is important that an interface for displaying memory information 
is as simple and unintrusive as possible. Obviously, it is not possible for an urgent low 
memory warning notifier to be unintrusive, but most memory reports and memory meters do 
not need to be designed to draw users’ attention away from the actual work they are doing 
with the system.   

Finally, if you do choose to design one or more separate interface contexts for managing 
memory, it is important that the information displayed in those interfaces is mutually 
consistent, and also consistent with the information displayed by the application’s main user 
interface. Microsoft Windows unfortunately provides several counter examples to this 
principle  with a number of tools that provide information about memory use (from special 
monitor tools to application about boxes) but where every tool displays quite different, often 
contradictory information about the system’s memory use. 

 For example, the illustration below shows two of Windows information tools displaying 
completely unrelated information about memory use. Furthermore, displaying an application 
“About” box also provides information about memory use  in this case, saying that 
“Available Physical Memory “ is 24104 KB”.  
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Display Styles 

Memory reports do not have to be textual.  Graphical displays can be quite effective, 
especially for presenting an overview of the state of memory use, such as the pie charts used 
by Windows to display information about disk space, although this particular example is quite 
intrusive — the pie does not need to be as large as it is!  Other graphical alternatives include 
bar charts, line charts, and even old fashioned meter dials, used by various tools in Unix and 
Windows NT. 

[kjx pictures of resource meters] 

Graphs of resource usage against time can also provide much useful information quite plainly, 
by showing not only the current state of the system, but also the trends as the system runs. For 
this reason, many resource meters, including Unix's xload and Windows System Monitor use 
simple time series charts, either as alternatives or in addition to displays showing the current 
state. 

Displaying information about different kinds of memory 

Often a system can have several different constraints that apply to different kinds of memory.  
In this situation, allocating or freeing space in one kind of memory does not affect the 
memory consumption in another kind of memory space. For example, any of the following 
memory spaces may be constrained: 

• Global heap space shared by the whole system 
• Heap space for each individual process 
• Stack space for each individual process 
• Reservoirs used to store objects in VARIABLE SIZED USER MEMORY. 
• Physical secondary storage  in disk, flash cards, or battery backed-up RAM 
• Memory buffers or caches used by file or network subsystems, paging, or for loading 

packages 
• Garbage collected heaps (and different regions within the heaps for sophisticated 

algorithms) 
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If a system has several different kinds of memory with different characteristics, each of these needs to 
be treated individually. This will complicate the users’ conceptual model of the system, because to 
understand and operate the system users will have to understand what each different kind of memory 
is for, how it is used, and how their use of the system affects its use of each different kind memory. 
Memory reports or memory meters can display information about the different kinds of memory in the 
system, so that users can manage each kind as necessary. 

The TeX batch-mode document formatting system uses pooled allocation, so when it is 
configured different amounts of memory must be set apart to represent strings, characters 
within strings, words, control sequences, fonts and font information, hyphenation exceptions, 
and five different kinds of stack.  Every time TeX completes running it produces a memory 
report in a log file that itemises its use of each different kind of memory.  Typically, users 
only read these log files when TeX runs out of memory, and the information in the log can 
help determine precisely why TeX ran out of memory. For example, if font memory is 
exhausted then the document has used too many fonts  this can only be fixed by configuring 
a version of TeX with more font space, or by using DATA CHAINING, and subdividing the 
document so each part uses fewer fonts. Alternatively, a stack overflow generally means the 
user has accidentally written a recursive macro call, and needs to find and fix the macro 
definition. 

Here is how much of TeX's memory you used: 
 523 strings out of 10976 
 5451 string characters out of 73130 
 56812 words of memory out of 263001 
 3434 multiletter control sequences out of 10000+0 
 16468 words of font info for 45 fonts, out of 200000 for 1000 
 14 hyphenation exceptions out of 1000 
 23i,10n,21p,311b,305s stack positions out of 300i,100n,500p,30000b,4000s 

The Self programming language (Ungar and Smith, 1999) includes a sophisticated Spy tool 
that visualises Self’s use of many different sorts of memory.  

[kjx pictures of self spy] 

Examples 
The users' conceptual model for the Strap-It-On PC includes explicit objects that represent 
running instances of applications, and includes the amount of memory used by the application 
as one of the attributes of that object. Every time users display applications, the amount of 
memory they occupy is displayed with them, to ensure users understand the relationships 
between applications and memory consumption.  

The figure below illustrates how this information is included into the Strap-It-On's "Please 
Kill an Application" dialog. This dialog is presented to the user whenever the system is 
running low on memory, and lists all the running application in order of their memory use 
(with the most profligate listed first).  Using the wrist-mounted touch screen, uses can choose 
which application they wish to kill, thereby releasing memory for tasks they presumably 
consider more important.  
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Known Uses 
The Macintosh and MS-Windows systems display the amount of free disk space in every 
desktop disk window.  As secondary storage has become less of a constraint, the prominence 
of the disk space meter has declined (from the title bar on the top of a Macintosh window to a 
footnote in a status line in Windows95). 

The virtual machine for the Self programming language incorporated a sophisticated memory 
meter. The Spy window graphically displayed the memory usage of a number of different 
heap regions, plus details of paging and garbage collector performance (for example, memory 
that is swapped out is displayed greyed out). 

The Macintosh “About Box” shows the memory usage of each application and the operating 
system.  MS-Windows applications typically also provides some memory use information in 
their about boxes: their top of the line applications have an over-the-top system information 
utility in their about boxes – no doubt to assist telephone support engineers working with the 
likes of DilbertTM’s boss!  Windows also provides a series of memory monitors and system 
tools that are mostly useless (because the statistics they display don’t make sense to most 
users, and don’t seen to agree with each other) – but some applications do have their own 
‘about boxes’ that display useful memory information. 

See also 
USER MEMORY CONFIGURATION describes how memory feedback can be combined with an 
interface used for adjusting the memory configuration.   
If you have a VARIABLE SIZED USER MEMORY the feedback can be combined with the interface 
used for accessing the user memory. 
If you are doing LOW QUALITY MULTIMEDIA at runtime you can provide feedback about the 
trade-offs users make between quality and memory. 
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User Memory Configuration 

Sometimes the system needs to adjust its memory requirements to suit user tasks 

• You have a medium to large amount of system memory 

• The system needs to allocate that memory for a number of different purposes related to 
the internal functions of the system. 

• The allocation depends upon the tasks the user will perform. 

• The allocation affects the relative performance or quality of the systems support for 
some user tasks. 

Some programs have medium or large amounts of memory available, but this memory needs 
to be divided up to service a number of competing demands.  For example, the Strap-It-On 
needs to allocate memory to store temporary copies of users documents as they are being 
edited, font caches to speed up rendering of those documents when they are displayed, image 
caches to store images rendered at screen resolution, and so on.  Making the memory 
allocation between these competing demands will alter the performance, quality of user 
experience, or even the functionality of the system.  If for example, you allocate no memory 
to the font cache perhaps the system won’t display proportional fonts; if you allocate no 
memory to the sounds buffers, it won’t play any sounds, and so on. 

A simple approach to handling this is to just allocate a fixed amount of memory to each 
system component — either an absolute amount of memory, or perhaps some proportion of 
the system’s overall available memory. While this is at least a memory allocation it doesn’t 
really solve the problem: memory will be allocated to services in which users are uninterested, 
and the services the user considers more important will be starved of memory.  Even if the 
system tries to dynamically juggle memory between various different uses, it still effectively 
has to guess what users’ preferences are going to be. 

So these approaches really don’t solve the problem. The allocation of memory needs to 
depend upon the current user’s current tasks: if editing a document, perhaps fast font 
rendering is most important; if playing a video game, perhaps stereo sound is important. The 
system cannot make these choices in advance because it cannot know the priorities of the 
particular user. 

Therefore: Let users choose the system’s priorities for memory. 

Design a conceptual model for the system’s memory use.  Ideally the model should be related 
to (or created from) the conceptual model of the interface and the user domain model.  For if 
users have to manage memory themselves, you’ll want the interface for it to be as closely 
integrated with the rest of the system as possible.  A Memory Budget is a good basis for such 
a model. 

Design an interface through which users can indicate how they would like memory to be 
allocated based on the conceptual model underlying the whole interface.  Using this interface, 
users can then juggle memory themselves, allocating memory to those parts of the system they 
consider important.  

User memory configuration can also manage trade-offs between memory demands and other 
requirements (typically time performance), as well as between competing demands for 
memory.   
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For example, the Strap-It-On interface includes a “system properties” tool that displays details 
of the attached hardware, software, and system services. This tool also allows users to adjust 
the amount of memory allocated to system services (including the font renderer, disk cache, 
sound player, and so on), and even to turn unwanted services off, completely removing them 
from memory. 

Consequences 
The system can allocate memory just where users wants it, making more efficient use of the 
available memory, because the system doesn’t have to guess the users preferred allocation of 
memory space.  This effectively reduces the program’s memory requirements to support any 
given task. 

Users can tailor memory configurations to suit hardware that was not envisaged by a 
program’s original designers. This increases the scalability of the system, because if more 
memory is available, it can be put to use where it will provide the most benefit. 

However: The user’s conceptual model of the system now has to incorporate quite a 
sophisticated model of systems use of memory. Interactions with the system are more 
complicated because users have to adjust the memory configuration from time to time.  If 
users don’t make a good memory allocation then the system will be worse off than if it had 
tried to do the allocation itself.  These problems can easily reduce the system’s usability. 

The implementation must be reliable enough to cope when the memory allocation is changed, 
costing programmer effort to implement the flexibility, and programmer discipline and 
testing costs to make sure every component is well behaved.  By definition, allowing the user 
control over a system’s memory use must decrease the predictability of the system’s memory 
use. 

Supporting centralised user memory configuration encourages global rather than local control 
of memory use. 

Implementation  
A system’s user memory configuration needs to be tightly coupled to its MEMORY FEEDBACK.  
Before users can decide how they would like the system to allocate its memory, they need 
information about the system’s current use of memory and the current configuration. 
Therefore the interface for memory configuration must be as close to the interface for memory 
feedback as possible — ideally, both patterns should be implemented in the same part of the 
interface; at a minimum, both interfaces should share similar terms and an underlying 
conceptual model.  MEMORY FEEDBACK can also give direct instructions on configuration.  For 
example, MS Windows out of memory message includes the instructions to "close down some 
applications, then expand your page file". 

Alternatively, if the user memory configuration may be a task normally performed by a 
specialised user role, such as a system administrator, rather than a more normal user. If this is 
the case, then it makes sense for memory configuration to be supported in the same way as 
any other configuration task required by the application, typically in a special part of the 
interface used by the administrator to accomplish all configuration tasks. 

More generally, there are four main techniques you can use to design interfaces for user 
memory configuration: 

• Editable graphical displays 
• Dialog boxes with text fields 
• Binary choices rather than continuous values. 
• Textual configuration files. 
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Graphical Displays 

Where the device hardware supports bitmapped displays and graphical user interfaces, and 
where configuration is part of the standard use of the system, then the interface for memory 
configuration should match that of the rest of the program. That is, users should interact with 
appropriate graphical widgets to supply the information.  Generally, some kind of slider 
control should be chosen to represent the kind of continuous numeric data usually required by 
configuration parameters.  

Microsoft windows and the Palm Pilot all make great use of sliders to configure their memory 
use. For example, the Windows dialog box below shows a slider use to allocate the secondary 
storage space for caching deleted files in the ‘Recycle Bin’. 

 
Text Fields 

Technically, graphical sliders and other widgets can have some problems: they can make it 
difficult for users to enter precise values for configuration parameters, and can be hard to 
implement correctly. Simple text files can be a common alternative to sliders, especially if a 
large range of values many need to be entered (from 100K to 500M is not unreasonable) or if 
precision is more important than graphical style. 

For example, Apple Macintosh computers allow users to configure the amount of memory 
that should be allocated to each program when it is executing, via text entry fields in the 
application’s information box. 
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Binary Choices 

Another alternative is to present binary choices about memory use, rather than continuous 
scalar choices. Binary questions are often easier for users to understand because they can be 
phrased in terms of a simple conceptual model of the application.  Consider the difference 
between a scalar choice (to allocate between zero and ten megabytes to an antialiased font 
cache) and a binary choice (to turn font antialiasing on or off).  For users to understand the 
continuous choice, they must not only understand what font antialiasing is, and why they 
might want it, but also what a byte or a kilobyte is, how many they have at their disposal, and 
how many they wish to spend on antialiasing.  Once they have chosen or altered the 
configuration value, it may not be easy to see the difference the parameter makes (say 
between a one hundred kilobyte cache and a one hundred and three kilobyte cache). 

Alternatively, a binary choice is simpler than a continuous choice: users need only have a 
rough idea about what font antialiasing is, and the effects of either value of the parameter will 
be quickly apparent.  

For example, Windows NT allows you to turn various system services on or off, but not to 
have a service half-enabled.  PKZIP offers a choice between optimise for space and optimise 
for speed. 

[kjx example, installer for something? NT SERVER manager] 

Textural Configuration Files 

The simplest way to implement user memory configuration, especially at configuration time, 
is to read in a configuration file defining the values of the configuration parameters.  If your 
environment has an operating system, you may be able to use environment variables or 
registry parameters as alternatives to reading in a file.  These options have the advantages that 
the are trivial to implement, and for users who are software engineers or system 
administrators may be at least as easy to use as more extensive graphical facilities. On the 
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other hand, they are difficult to use for the less technically savvy, and are typically only 
suitable for parameters to be set at configuration time. 

[kjx example, config.sys or similar?] 

Static versus Dynamic Configuration 

As with many decisions about memory use, user memory configuration can be either static 
supported at configuration time before the system begins running, or dynamically adjustable 
while the system is running.  Generally, static configuration is easiest to implement (allowing 
dynamic configuration of  

Handling memory configuration at installation or configuration time also has the advantage 
that that is when the software’s resource consumption will be foremost in users minds, and so 
they are most likely to be interested in making configuration decisions.   The disadvantage is 
that without having used the software, they will not necessarily be in a good position to make 
those decisions. 

Automatic and Default Configuration 

One way to mitigate the negative effects of this pattern is to combine it with some level of 
automatic allocation, or, at the very least provide some sensible default allocations. This way, 
unsophisticated users who don’t need or want to care about memory allocation will at least 
receive some level of performance from the system, while those users who are willing to tailor 
the memory allocation strategy can receive better performance.  Also, when users take control 
of memory allocation, it can be useful to provide some sanity checking, so that, for example, 
you cannot deallocate all the memory currently used by the running program. 

For example most MS Windows installations dialogs allow the user to optimise the use of 
secondary storage by choose between several pre-set installation configurations, or by 
designing their own custom configuration. Most users simply use the “workstation” 
configuration that is selected by default  

[kjx wizard?] 

Examples 
Windows CE uses a slider to configure its most important memory parameter  balancing the 
amount of memory allocated to storing users data (“Storage Memory”) versus the amount of 
memory allocated to running applications (“Program Memory”).  Users can adjust the mix by 
dragging the slider, within the bounds of the memory currently occupied by storage and 
programs. 

 
The Acorn Archimedes operating system has a paradigmatic example of combined memory 
feedback and memory configuration.  The system can display a bar graph showing the 
system’s current memory configuration and memory use for a whole range of parameters — 
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for example, 1000K might be configured for a font cache, but only 60K of the cache is 
actually occupied.  The user can then drag the bars representing tuneable parameters to 
change the system’s memory configuration. System services are automatically disabled if the 
amount of memory allocated to them is zero. 

 
 

Known Uses 
Web browsers, such as Netscape and Internet Explorer, allow users to configure the size of 
page caches in primary or secondary storage. 

Venerable operating systems such as MS-DOS, VMS, and Unix have traditionally provided 
configuration files or command line parameters that can be used to tweak memory use. DOS’s 
CONFIG.SYS is a classic example.  Users (for some special meaning of the word) can 
increasing the number of buffers, open files supported at the cost of decreasing the memory 
available to applications. More cuddly operating systems, such as Windows NT, sometimes 
provide configuration dialogue boxes that offer similar features. For example, NT’s service 
manager window allows users to turn operating system services on and off, and turning a 
service off releases that service’s memory.  The operating system BeOS takes this one step 
further and allows users to turn CPUs on and off — mostly off in practice, unfortunately, 
since this option instantly crashes the machine! 

See also. 
MEMORY FEEDBACK can provide users with the information they need to make sensible 
configuration choices when configuring a system’s memory use. 

Users can be allowed to reduce the amount of memory allocated to multimedia in a program if 
the program supports dynamically applying LOW QUALITY MULTIMEDIA.   

Allowing users to alter memory allocation to other parts of the program can be implemented 
with help from the PARTIAL FAILURE, CAPTAIN OATS and MEMORY LIMIT patterns. 

USER MEMORY CONFIGURATION is the run-time complement to a MEMORY BUDGET. 

You probably need to use some form of VARIABLE ALLOCATION and MEMORY LIMITS to 
implement user memory configuration successfully. 
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Low Quality Multimedia 
Also Know As: Space-time Trade-off; Never Mind the Quality, Feel the Width. 

How can you reduce the memory requirements for multimedia? 

• You need to support graphics, sound, or other multimedia, to enhance the user 
experience. 

• The memory requirements for the multimedia are too big for your memory budget. 

• The broad details of the multimedia are more important than the fine details. 

• The multimedia is peripheral to the focus of the program. 

• The program needs to provide real-time or near real-time response. 

Some programs need to include multimedia presentation or interaction.  For example, the 
original specifications for the StrapItOn required it to play a video of an imploding supernova 
being consumed by a black whole (complete with 3D graphics and stereo-surround-sound 
effects by a chart-topping grunge band) every time a memo was deleted from its database.  
Arguably this should be a candidate for a FEATURECTOMY but since competing products 
support a similar feature, management ruled it had to be included. This pleased Gerald the 
Geek, who had spent the last three months tweaking the photo-relativistic star implosion 
simulation after Our Founder’s video was cancelled.  
Unfortunately, graphics (particularly video animations), sound, three-dimensional models and 
other multimedia resources occupy large amounts of memory — secondary storage, perhaps, 
when they are not in use, but also large amounts of primary memory when then are being 
displayed, played, rendered, or otherwise presented to users.  The memory requirements for 
multimedia can often make a large contribution to the memory requirements of the program as 
a whole. 
Many multimedia resources are, however, only peripheral to the users’ tasks the program is 
supposed to support — that is, they may help ensure user’s enjoy using the program, but they 
don’t actually help users get their work done.  Microsoft Windows contains a number of 
examples of such peripheral uses of multimedia — animations in dialog boxes for file move 
or delete, the irritating help “wizards”, and musical phrases played as the system starts up and 
shuts down. A typical installation of Windows 95 requires six megabytes for sound and music 
files alone, but will operate quite successfully with sound output muted and wizards 
deactivated.  
So, how can you support complex multimedia presentations while remaining within your 
memory budget? 

Therefore: Reduce the quality — bits per pixel, sample length, size, complexity, or detail — of the 
user experience multimedia. 

The memory requirements of a multimedia resource depend upon the size and quality of the 
resource. If you increase the size or the quality, you will increase the memory requirements. 
More to the point, if you decrease the quality, you can decrease the memory requirements for 
a given resource size. So, to fit a given amount of multimedia into a fixed amount of memory 
— never mind the quality, feel the width — that is, decrease the quality of the multimedia to 
fit the memory available. 

Often, multimedia resources are constructed when the program is being built, and so you can 
process them in advance — often simply by changing them to use a lower quality format. If 
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you are using dynamic memory allocation, or cannot process all the multimedia resources in 
advance, consider using PARTIAL FAILURE to let quality degrade gradually as resources are 
consumed, by determining the amount of memory available and reducing quality until they fit. 
For example, by reducing the Strap-It-On imploding supernova animation to a 32 pixel square 
using only 256 colours and showing only 10 frames, the whole animation could be fitted into 
10K. Gerald was still upset, until someone else pointed out it meant a) they could include lots 
more animations if the quality was kept low, and, b) they would need lots of work in advance 
to compress and tweak the animations. 

Consequences 
By reducing the quality of the multimedia used in a program, the memory requirements for the 
multimedia, and thus the program as a whole, are reduced.  Using lower-quality multimedia 
can also increase the time performance and especially the real-time response of the program. 

If several pieces of multimedia can be treated in the same way (such as requiring all images to 
be black and white, and a maximum 200 pixels square) can increase the predictability of the 
program’s memory use.  Removing truly unnecessary multimedia can increase the program’s 
usability. 

However: The quality of the presentation is reduced, and this may reduce the program’s 
usability. Reducing multimedia quality can make it harder to scale the program up to take 
advantage of environments where the higher quality could be supported, reducing the 
program’s scalability.Programmer effort is required to process the multimedia to reduce 
its quality. Reducing quality dynamically will take even more effort, and increase testing 
cost. Some techniques for reducing multimedia’s quality of storage requirements may suffer 
from legal problems, such as software patents.  

Implementation 
By carefully tailoring your multimedia quality to match the output device, you can keep 
perceived quality high, while lowering memory requirements.   The simplest case is that it is 
never worth storing data at a higher quality than the output device can reproduce. For 
example, if you only have a 75dpi screen, why store images at 300dpi? 75dpi images will look 
exactly the same, but take up much less space. Similarly, if you only have an 8-bit laptop 
speaker, why store 16-bit sound? 

Many sound and image manipulation programs explicitly allow multimedia to be stored in 
different formats, so that you can make the trade-off between quantity and quality — these 
formats often use COMPRESSION to save memory.  Specialist tools are also available for 
automatically adjusting the quality of image files to be served on the web, to reduce their 
memory size and thus download time. 

Unfortunately, tailoring multimedia to fit a particular device is a one-way trip: if a better 
device becomes available then low-resolution multimedia will not be able to take advantage of 
it. Similarly, if you need to enlarge an image, for example, once the resolution has been 
reduced it cannot be increased. 

Other Space Trade-offs 

This pattern can also be used to trade off other qualities against memory use and multimedia 
quality.  In particular, multimedia presentations can often require large amounts of CPU time 
or regular (soft-real time) amounts of it.  Meeting these requirements can also reduce a 
program’s absolute time performance or real-time response. Downloading large multimedia 
presentations requires a large amount of network bandwidth.  Reducing the quality of the 
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multimedia in your system can simultaneously increase a program’s responsiveness while 
reducing its requirements for bandwidth, secondary storage, and main memory. 

Quality vs. cost trade-offs can be made statically while the program is being written, when the 
program is installed or configured, or dynamically as the program runs.  For example, an 
animated user interface may ideally need to produce 16-20 frames per second.   If resources 
are not available, it could dynamically either produce fewer frames and display each frame for 
longer, reducing the frame rate, or it could maintain the frame rate but reduce the amount of 
detail in each frame.  Making trade-offs dynamically means that the multimedia quality can be 
adjusted precisely to suit the system that is displaying it, but has the disadvantage that the full 
quality presentation needs to be stored somewhere, typically on secondary storage, or may 
need to be downloaded over a slow network link. On the other hand, reducing quality at 
design time means that only the lower quality multimedia needs to be stored or transmitted, 
and any computation necessary to reduce quality (such as ADAPTIVE FILE COMPRESSION can be 
carried out before hand, without tight constraints on CPU time or memory use. 

User memory configuration 

With some care, you can design your software so that users can choose what multimedia 
features will be included as the program runs, and which will be left as options.  For example, 
a web browser could let users choose: 

• Whether or not to download images automatically 
• If not, when they would like images to be downloaded 
• Whether or not to play sounds found on any web pages 
• Whether or not to download or show any animated images found on web pages. 

As discussed in the USER MEMORY CONFIGURATION pattern, these choices could be binary or 
continuous. While binary choices are easier to understand than a continuous choice, 
continuous choices could also be used  for example, an option to download only images 
below a certainly size would enable small images to be downloaded quickly without user 
intervention, while requiting an explicit user request to download large images. 

The Virtue of Prudence 

Once you have chosen to reduce the quality of the multimedia, or even the presentation 
quality of your user interface, you do not have to settle for an interface that feels low-quality 
overall.  In fact, with clever interface design it is possible to make a low-quality interface a 
virtue, rather than a liability.  The early Macintosh user interface design is a classic example 
of this. Early Macintoshes had physically smaller screens than competing IBM PCs, did not 
support colour graphics, did not have nearly as many keys on the keyboard or expansion slots 
inside the chassis.  With clever design (and marketing!) all of these were turned in the 
Macintoshes favour, so that various PC software manufacturers eventually copied its interface 
to remain competitive. More recently, the PalmPilot is similarly making a virtue of graphics 
display that has at least ten times less overall resolution than a PC screen. The Playstation is 
another example  although it cannot match the resolution of a high-quality PC monitor 
because it must display its output on domestic TV receivers, its games are carefully designed 
to suit the resulting “grungy” low-resolution feel  (and to take advantage of 3D hardware most 
PCs do not support). In the music industry, recent synthesisers include features to reduce the 
quality of a sound sample to provide a lower-fidelity distorted sound highly sought after by 
“alternative” musicians. 
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Examples 
Different kinds of multimedia formats can require vastly different amounts of memory to 
store, but when it comes to getting an idea across (rather than impressing users with 
production values) the benefits of higher resolution formats may not be worth the effort.  

For example, the ASCII text to describe a small rodent occupies five bytes 
mouse 

and a logically expanded version occupies only three bytes 
rat 

A simple graphical representation occupies about forty-six bytes: 
     ()()_____   
     /**      )   _ 
    O_\\-m--m-/____) 

and a bitmapped version about 108 bytes in GIF format. 

 
A line drawing in postscript occupies rather more space: 

[Addison-Wesley to provide an line-drawn icon for a mouse] 

and a photorealistic picture, even more. 

[Addison-Wesley to provide a library photograph of a mouse] 

On a larger scale, Microsoft PowerPoint can save presentations in a number of formats, for 
different screen types, for printing onto overhead transparencies, or for displaying on the 
Worldwide web. The space occupied by a presentation can change by a factor of ten 
depending upon how it is stored.  

[need actual examples here] 

Known Uses 
The Non-Designers Web Book [ndwb] describes how images to be presented on web page can 
be tailored to reduce their memory consumption (and thus download time) while maintaining 
good  

The Windows95 sound recorder tool makes trade-offs between quality and memory 
requirements explicit, showing how much memory a given sound occupies, and allowing 
users to choose a different format that will change the sound file’s memory use. 

Many desktop computers, from the Apple ][ series to most modern PC clones, allow users to 
choose the resolution and colour depth used by the display screen.  In many of these 
machines, including the including the BBC Micro and Acorn Archimedes, choosing a lower 
resolution or fewer colours (or black-and-white only) left more memory free for running 
programs. 

Web browsers, including Netscape and Internet Explorer, allow users to tailor the display 
quality to match their network bandwidth, by choosing not to download images automatically 
or caching frequently accessed pages on local secondary storage. 

See also 
COMPRESSION can provide an alternative to lowering multimedia quality. Rather than reducing 
memory requirements by reducing quality, reduce the requirements by using a more efficient 
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data representation.  Unfortunately, while many types of multimedia resources can be 
compressed efficiently for storage, then need to be uncompressed before they can be used, and 
can cost more processor time and temporary memory than using the uncompressed resource 
directly. 

A good FEATURECTOMY may let you remove unnecessary multimedia from the program 
completely, while USER MEMORY CONFIGURATION will let your users choose how much 
memory to spend on multimedia, as against getting useful work done. 

  


	1_IntroductionChapter.pdf
	2_ArchitectureChapter.pdf
	3_SecondaryStorageChapter.pdf
	4_CompressionChapter.pdf
	5_DataStructuresChapter.pdf
	6_AllocationChapter.pdf
	7_ForcesAppendex.pdf
	PatternSummaries.pdf
	ThinkingSmall.pdf
	UserInvolvement.pdf

